This commit is contained in:
2026-01-14 18:58:13 -05:00
parent b3f1b00510
commit 0d9c0c33fa
4 changed files with 323 additions and 519 deletions

View File

@@ -1,238 +0,0 @@
//! Wraps a writer with UDP headers.
//! This is useful for wrapping RawSocket Writer with appropriate headers.
rand: Random,
wrapped: *Writer,
interface: Writer,
pub fn init(w: *Writer, buffer: []u8) !NetWriter {
std.debug.assert(buffer.len > @sizeOf(EthernetHeaders) + @sizeOf(IpHeaders) + @sizeOf(UdpHeaders));
var prng = Random.DefaultPrng.init(blk: {
var seed: u64 = undefined;
try posix.getrandom(mem.asBytes(&seed));
break :blk seed;
});
return .{
.rand = prng.random(),
.wrapped = w,
.interface = .{
.vtable = &.{
.drain = drain,
// .flush = flush,
},
.buffer = buffer,
},
};
}
fn drain(io_w: *Writer, data: []const []const u8, splat: usize) Writer.Error!usize {
const w: *NetWriter = @alignCast(@fieldParentPtr("interface", io_w));
const headers_byte_len = comptime (EthernetHeaders.byte_len + (@bitSizeOf(IpHeaders) / 8) + @sizeOf(UdpHeaders));
const headers: [headers_byte_len]u8 = blk: {
const ether_headers: EthernetHeaders = .{
.dest_mac = .{ 0xff, 0xff, 0xff, 0xff, 0xfe, 0xff },
.src_mac = src_blk: {
var output_bytes: [6]u8 = undefined;
output_bytes[0] = 0xee;
w.rand.bytes(output_bytes[1..]);
break :src_blk output_bytes;
},
.ether_type = 0x0800,
};
const total_len = Writer.countSplat(data, splat) + w.interface.end;
const ip_headers: IpHeaders = .{
// length of the packet minus eth header
.total_length = @intCast(headers_byte_len + total_len - EthernetHeaders.byte_len), //@intCast(total_len),
.ttl = 64,
.protocol = 0x11,
.src_ip = .{ 0xff, 0x02, 0x03, 0x04 },
.dest_ip = .{ 0xff, 0xff, 0xff, 0xff },
};
const udp_headers: UdpHeaders = .{
.src_port = 0xbbbb,
.dest_port = 8888,
.length = @intCast(total_len + @sizeOf(UdpHeaders)),
};
var buf: [headers_byte_len]u8 = undefined;
var buf_w = Writer.fixed(&buf);
_ = try ether_headers.write(&buf_w);
try ip_headers.write(&buf_w);
try buf_w.writeStruct(udp_headers, .big);
break :blk buf;
};
_ = try w.wrapped.write(&headers);
const total_len = try w.wrapped.writeSplatHeader(w.interface.buffered(), data, splat);
try w.wrapped.flush();
return total_len - w.interface.consumeAll();
}
const EthernetHeaders = struct {
dest_mac: @Vector(6, u8),
src_mac: @Vector(6, u8),
ether_type: u16,
fn write(hdr: EthernetHeaders, writer: *std.Io.Writer) Writer.Error!usize {
try writer.writeInt(u48, @bitCast(hdr.dest_mac), .big);
try writer.writeInt(u48, @bitCast(hdr.src_mac), .big);
try writer.writeInt(u16, hdr.ether_type, .big);
return byte_len;
}
const byte_len = blk: {
var res: usize = 0;
res += @bitSizeOf(u48) / 8;
res += @bitSizeOf(u48) / 8;
res += @bitSizeOf(u16) / 8;
break :blk res;
};
fn bytes(hdr: EthernetHeaders) [byte_len]u8 {
var res: [byte_len]u8 = undefined;
hdr.write(Writer.fixed(&res)) catch unreachable;
}
};
const IpHeaders = extern struct {
dest_ip: @Vector(4, u8) align(1),
src_ip: @Vector(4, u8) align(1),
header_checksum: @Vector(2, u8) align(1) = .{ 0, 0 },
protocol: u8 align(1) = 0,
ttl: u8 align(1) = 0,
fragment_and_flags: packed struct(u16) {
fragment_offset: u13 = 0,
ethernet_flags: u3 = 0,
} = .{},
// fragment_offset: u13 = 0,
// ethernet_flags: u3 = 0,
identification: u16 align(1) = 0,
total_length: u16 align(1) = 0x04,
type_of_service: u8 align(1) = 0,
header_and_version: packed struct(u8) {
header_length: u4 = 5,
ip_version: u4 = 4,
} = .{},
// header_length: u4 = 5,
// ip_version: u4 = 4,
fn write(hdr: IpHeaders, writer: *std.Io.Writer) Writer.Error!void {
try writer.writeInt(u8, 0x45, .big); // ip version and header length
try writer.writeByte(hdr.type_of_service);
try writer.writeInt(u16, hdr.total_length, .big);
try writer.writeInt(u16, hdr.identification, .big);
try writer.writeInt(u16, 0x00, .big); // ethernet flags and fragment offset
try writer.writeByte(hdr.ttl);
try writer.writeByte(hdr.protocol);
try writer.writeInt(u16, @bitCast(hdr.header_checksum), .big);
try writer.writeInt(u32, @bitCast(hdr.src_ip), .big);
try writer.writeInt(u32, @bitCast(hdr.dest_ip), .big);
}
fn bytes(hdr: IpHeaders) [@bitSizeOf(IpHeaders) / 8]u8 {
var res: [@bitSizeOf(IpHeaders) / 8]u8 = undefined;
var w = Writer.fixed(&res);
_ = hdr.write(&w) catch unreachable;
return res;
}
};
test IpHeaders {
var a: IpHeaders = .{
.dest_ip = .{ 1, 2, 3, 4 },
.src_ip = .{ 5, 6, 7, 8 },
// .header_checksum = .{ 0x1, 0x1 },
// .protocol = 0,
// .ttl = 0x64,
// .identification = 3,
// .type_of_service = 7,
};
// a.dest_ip = .{ 1, 2, 3, 4 };
// a.src_ip = .{ 5, 6, 7, 8 };
std.debug.print("ip struct: {}\n", .{a});
std.debug.print("dest ip: {}\n", .{a.dest_ip});
std.debug.print("src ip: {}\n", .{a.src_ip});
std.debug.print("raw b : {x}\n", .{@as([@bitSizeOf(IpHeaders) / 8]u8, @bitCast(a))});
std.debug.print("ip bytes: {x}\n", .{a.bytes()});
var a_struct: [@bitSizeOf(IpHeaders) / 8]u8 = undefined;
var a_struct_w = Writer.fixed(&a_struct);
_ = a_struct_w.writeStruct(a, .big) catch unreachable;
std.debug.print("ip struct: {x}\n", .{a_struct});
try std.testing.expectEqual(a, a);
}
const UdpHeaders = packed struct {
checksum: @Vector(2, u8) = .{ 0, 0 },
length: u16,
dest_port: u16,
src_port: u16,
fn write(hdr: UdpHeaders, writer: *std.Io.Writer) Writer.Error!void {
try writer.writeStruct(hdr, .big);
}
fn bytes(hdr: UdpHeaders) [@sizeOf(UdpHeaders)]u8 {
var res: [@sizeOf(UdpHeaders)]u8 = undefined;
var w = Writer.fixed(&res);
_ = hdr.write(&w) catch unreachable;
return res;
}
};
test UdpHeaders {
const a: UdpHeaders = .{
.src_port = 1,
.dest_port = 2,
.length = 3,
.checksum = .{ 0x04, 0x05 },
};
var a_struct: [@sizeOf(UdpHeaders)]u8 = undefined;
var a_struct_w = Writer.fixed(&a_struct);
_ = a_struct_w.writeStruct(a, .big) catch unreachable;
try std.testing.expectEqual(a.bytes(), a_struct);
}
const std = @import("std");
const Random = std.Random;
const posix = std.posix;
const Writer = std.Io.Writer;
const mem = std.mem;
const NetWriter = @This();
const saprusOptions: std.Io.net.BindOptions = .{
.mode = .raw,
.protocol = 0,
};
fn netSaprusBindIpPosix(
userdata: ?*anyopaque,
address: *const IpAddress,
options: IpAddress.BindOptions,
) IpAddress.BindError!net.Socket {
if (!have_networking) return error.NetworkDown;
const t: *Threaded = @ptrCast(@alignCast(userdata));
const family = std.os.linux.PF.PACKET;
const socket_fd = try openSocketPosix(t, family, options);
errdefer posix.close(socket_fd);
var storage: PosixAddress = undefined;
var addr_len = addressToPosix(address, &storage);
try posixBind(t, socket_fd, &storage.any, addr_len);
try posixGetSockName(t, socket_fd, &storage.any, &addr_len);
return .{
.handle = socket_fd,
.address = addressFromPosix(&storage),
};
}

View File

@@ -1,32 +0,0 @@
const std = @import("std");
const gcat = @import("gatorcat");
const RawSocketWriter = @This();
const Writer = std.Io.Writer;
const assert = std.debug.assert;
interface: Writer,
socket: gcat.nic.RawSocket,
fn drain(io_w: *std.Io.Writer, data: []const []const u8, splat: usize) Writer.Error!usize {
const w: *RawSocketWriter = @alignCast(@fieldParentPtr("interface", io_w));
const rem_buf = io_w.unusedCapacitySlice();
var rem_w = Writer.fixed(rem_buf);
const res = rem_w.writeSplat(data, splat) catch rem_buf.len;
io_w.advance(res);
const buffered = io_w.buffered();
w.socket.linkLayer().send(buffered) catch return error.WriteFailed;
_ = io_w.consumeAll();
return res;
}
pub fn init(interface_name: [:0]const u8, buffer: []u8) !RawSocketWriter {
std.debug.assert(buffer.len > 0);
return .{
.interface = .{
.vtable = &.{ .drain = drain },
.buffer = buffer,
},
.socket = try .init(interface_name),
};
}

View File

@@ -28,289 +28,365 @@ pub const MessageParseError = MessageTypeError || error{
InvalidMessage, InvalidMessage,
}; };
// ZERO COPY STUFF pub const RelayMessage = struct {
// &payload could be a void value that is treated as a pointer to a [*]u8 dest: Dest,
/// All Saprus messages payload: []const u8,
pub const Message = packed struct {
pub const Relay = packed struct {
dest: @Vector(4, u8),
payload: void,
pub fn getPayload(self: *align(1) Relay) []u8 { pub const @"type": PacketType = .relay;
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16)); pub const Dest = struct {
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Relay) / 8]; bytes: [4]u8,
}
};
pub const Connection = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
payload: void,
pub fn getPayload(self: *align(1) Connection) []u8 { /// Asserts bytes is less than or equal to 4 bytes
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16)); pub fn fromBytes(bytes: []const u8) Dest {
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Connection) / 8]; var buf: [4]u8 = @splat(0);
} std.debug.assert(bytes.len <= buf.len);
@memcpy(buf[0..bytes.len], bytes);
fn nativeFromNetworkEndian(self: *align(1) Connection) void { return .{ .bytes = buf };
self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port);
self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id);
}
fn networkFromNativeEndian(self: *align(1) Connection) void {
self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port);
self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = nativeToBig(@TypeOf(self.msg_id), self.msg_id);
} }
}; };
const Self = @This(); pub fn init(dest: Dest, payload: []const u8) RelayMessage {
const SelfBytes = []align(1) u8; return .{ .dest = dest, .payload = payload };
type: PacketType,
length: u16,
bytes: void = {},
/// Takes a byte slice, and returns a Message struct backed by the slice.
/// This properly initializes the top level headers within the slice.
/// This is used for creating new messages. For reading messages from the network,
/// see: networkBytesAsValue.
pub fn init(@"type": PacketType, bytes: []u8) *align(1) Self {
std.debug.assert(bytes.len >= @sizeOf(Self));
const res: *align(1) Self = @ptrCast(bytes.ptr);
res.type = @"type";
res.length = @intCast(bytes.len - @sizeOf(Self));
return res;
} }
/// Compute the number of bytes required to store a given payload size for a given message type. /// Asserts that buf is large enough to fit the relay message.
pub fn calcSize(comptime @"type": PacketType, payload_len: usize) MessageTypeError!u16 { pub fn toBytes(self: RelayMessage, buf: []u8) []u8 {
const header_size = @bitSizeOf(switch (@"type") { var out: Writer = .fixed(buf);
.relay => Relay, out.writeInt(u16, @intFromEnum(RelayMessage.type), .big) catch unreachable;
.connection => Connection, out.writeInt(u16, @intCast(self.payload.len + self.dest.bytes.len), .big) catch unreachable;
.file_transfer => return MessageTypeError.NotImplementedSaprusType, out.writeAll(&self.dest.bytes) catch unreachable;
else => return MessageTypeError.UnknownSaprusType, out.writeAll(self.payload) catch unreachable;
}) / 8; return out.buffered();
return @intCast(payload_len + @sizeOf(Self) + header_size);
} }
fn getRelay(self: *align(1) Self) *align(1) Relay { pub fn fromBytes(buf: []const u8) RelayMessage {
return std.mem.bytesAsValue(Relay, &self.bytes); var in: Reader = .fixed(buf);
}
fn getConnection(self: *align(1) Self) *align(1) Connection {
return std.mem.bytesAsValue(Connection, &self.bytes);
} }
/// Access the message Saprus payload. test toBytes {
pub fn getSaprusTypePayload(self: *align(1) Self) MessageTypeError!(union(PacketType) { var buf: [1024]u8 = undefined;
relay: *align(1) Relay, const relay: RelayMessage = .init(
file_transfer: void, .fromBytes(&.{ 172, 18, 1, 30 }),
connection: *align(1) Connection, // zig fmt: off
}) { &[_]u8{
return switch (self.type) { 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65,
.relay => .{ .relay = self.getRelay() }, 0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64
.connection => .{ .connection = self.getConnection() }, },
.file_transfer => MessageTypeError.NotImplementedSaprusType, // zig fmt: on
else => MessageTypeError.UnknownSaprusType, );
// zig fmt: off
var expected = [_]u8{
0x00, 0x3c, 0x00, 0x17, 0xac, 0x12, 0x01, 0x1e, 0x72,
0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64
}; };
} // zig fmt: on
try std.testing.expectEqualSlices(u8, &expected, relay.toBytes(&buf));
/// Convert the message to native endianness from network endianness in-place.
pub fn nativeFromNetworkEndian(self: *align(1) Self) MessageTypeError!void {
self.type = @enumFromInt(bigToNative(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = bigToNative(@TypeOf(self.length), self.length);
errdefer {
// If the payload specific headers fail, revert the top level header values
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.nativeFromNetworkEndian(),
// We know other values are unreachable,
// because they would have returned an error from the switch condition.
else => unreachable,
}
}
/// Convert the message to network endianness from native endianness in-place.
pub fn networkFromNativeEndian(self: *align(1) Self) MessageTypeError!void {
try switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.networkFromNativeEndian(),
.file_transfer => MessageTypeError.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType,
};
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
/// Convert network endian bytes to a native endian value in-place.
pub fn networkBytesAsValue(bytes: SelfBytes) MessageParseError!*align(1) Self {
const res = std.mem.bytesAsValue(Self, bytes);
try res.nativeFromNetworkEndian();
return .bytesAsValue(bytes);
}
/// Create a structured view of the bytes without initializing the length or type,
/// and without converting the endianness.
pub fn bytesAsValue(bytes: SelfBytes) MessageParseError!*align(1) Self {
const res = std.mem.bytesAsValue(Self, bytes);
return switch (res.type) {
.relay, .connection => if (bytes.len == res.length + @sizeOf(Self))
res
else
MessageParseError.InvalidMessage,
.file_transfer => MessageParseError.NotImplementedSaprusType,
else => MessageParseError.UnknownSaprusType,
};
}
/// Deprecated.
/// If I need the bytes, I should just pass around the slice that is backing this to begin with.
pub fn asBytes(self: *align(1) Self) SelfBytes {
const size = @sizeOf(Self) + self.length;
return @as([*]align(1) u8, @ptrCast(self))[0..size];
} }
}; };
test "testing variable length zero copy struct" { // pub const ConnectionMessage = struct {
{ // length: u16,
// Relay test // src_port: u16,
const payload = "Hello darkness my old friend"; // dest_port: u16,
var msg_bytes: [try Message.calcSize(.relay, payload.len)]u8 align(@alignOf(Message)) = undefined; // seq_num: u32 = 0,
// msg_id: u32 = 0,
// // _reserved: u8 = 0,
// options: ConnectionOptions = .{},
// payload: []u8,
// Create a view of the byte slice as a Message // pub const type: PacketType = .connection;
const msg: *align(1) Message = .init(.relay, &msg_bytes);
{ // /// Asserts that buf is large enough to fit the connection message.
// Set the message values // fn toBytes(self: ConnectionMessage, buf: []u8) []u8 {
{ // var out: Writer = .fixed(buf);
// These are both set by the init call. // out.writeInt(u16, ConnectionMessage.type, .big) catch unreachable;
// msg.type = .relay; // return w.buffered();
// msg.length = payload_len; // }
} // };
const relay = (try msg.getSaprusTypePayload()).relay;
relay.dest = .{ 1, 2, 3, 4 };
@memcpy(relay.getPayload(), payload);
}
{ // // ZERO COPY STUFF
// Print the message as hex using the network byte order // // &payload could be a void value that is treated as a pointer to a [*]u8
try msg.networkFromNativeEndian(); // /// All Saprus messages
// We know the error from nativeFromNetworkEndian is unreachable because // pub const Message = packed struct {
// it would have returned an error from networkFromNativeEndian. // pub const Relay = packed struct {
defer msg.nativeFromNetworkEndian() catch unreachable; // dest: @Vector(4, u8),
std.debug.print("relay network bytes: {x}\n", .{msg_bytes}); // payload: void,
std.debug.print("bytes len: {d}\n", .{msg_bytes.len});
}
if (false) { // pub fn getPayload(self: *align(1) Relay) []u8 {
// Illegal behavior // const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
std.debug.print("{any}\n", .{(try msg.getSaprusTypePayload()).connection}); // return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Relay) / 8];
} // }
// };
// pub const Connection = packed struct {
// src_port: u16, // random number > 1024
// dest_port: u16, // random number > 1024
// seq_num: u32 = 0,
// msg_id: u32 = 0,
// reserved: u8 = 0,
// options: ConnectionOptions = .{},
// payload: void,
try std.testing.expectEqualDeep(msg, try Message.bytesAsValue(msg.asBytes())); // pub fn getPayload(self: *align(1) Connection) []u8 {
} // const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
// return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Connection) / 8];
// }
{ // fn nativeFromNetworkEndian(self: *align(1) Connection) void {
// Connection test // self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port);
const payload = "Hello darkness my old friend"; // self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port);
var msg_bytes: [try Message.calcSize(.connection, payload.len)]u8 align(@alignOf(Message)) = undefined; // self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num);
// self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id);
// }
// Create a view of the byte slice as a Message // fn networkFromNativeEndian(self: *align(1) Connection) void {
const msg: *align(1) Message = .init(.connection, &msg_bytes); // self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port);
// self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port);
// self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num);
// self.msg_id = nativeToBig(@TypeOf(self.msg_id), self.msg_id);
// }
// };
{ // const Self = @This();
// Initializing connection header values // const SelfBytes = []align(1) u8;
const connection = (try msg.getSaprusTypePayload()).connection;
connection.src_port = 1;
connection.dest_port = 2;
connection.seq_num = 3;
connection.msg_id = 4;
connection.reserved = 5;
connection.options = @bitCast(@as(u8, 6));
@memcpy(connection.getPayload(), payload);
}
{ // type: PacketType,
// Print the message as hex using the network byte order // length: u16,
try msg.networkFromNativeEndian(); // bytes: void = {},
// We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian. // /// Takes a byte slice, and returns a Message struct backed by the slice.
defer msg.nativeFromNetworkEndian() catch unreachable; // /// This properly initializes the top level headers within the slice.
std.debug.print("connection network bytes: {x}\n", .{msg_bytes}); // /// This is used for creating new messages. For reading messages from the network,
std.debug.print("bytes len: {d}\n", .{msg_bytes.len}); // /// see: networkBytesAsValue.
} // pub fn init(@"type": PacketType, bytes: []u8) *align(1) Self {
} // std.debug.assert(bytes.len >= @sizeOf(Self));
} // const res: *align(1) Self = @ptrCast(bytes.ptr);
// res.type = @"type";
// res.length = @intCast(bytes.len - @sizeOf(Self));
// return res;
// }
// /// Compute the number of bytes required to store a given payload size for a given message type.
// pub fn calcSize(comptime @"type": PacketType, payload_len: usize) MessageTypeError!u16 {
// const header_size = @bitSizeOf(switch (@"type") {
// .relay => Relay,
// .connection => Connection,
// .file_transfer => return MessageTypeError.NotImplementedSaprusType,
// else => return MessageTypeError.UnknownSaprusType,
// }) / 8;
// return @intCast(payload_len + @sizeOf(Self) + header_size);
// }
// fn getRelay(self: *align(1) Self) *align(1) Relay {
// return std.mem.bytesAsValue(Relay, &self.bytes);
// }
// fn getConnection(self: *align(1) Self) *align(1) Connection {
// return std.mem.bytesAsValue(Connection, &self.bytes);
// }
// /// Access the message Saprus payload.
// pub fn getSaprusTypePayload(self: *align(1) Self) MessageTypeError!(union(PacketType) {
// relay: *align(1) Relay,
// file_transfer: void,
// connection: *align(1) Connection,
// }) {
// return switch (self.type) {
// .relay => .{ .relay = self.getRelay() },
// .connection => .{ .connection = self.getConnection() },
// .file_transfer => MessageTypeError.NotImplementedSaprusType,
// else => MessageTypeError.UnknownSaprusType,
// };
// }
// /// Convert the message to native endianness from network endianness in-place.
// pub fn nativeFromNetworkEndian(self: *align(1) Self) MessageTypeError!void {
// self.type = @enumFromInt(bigToNative(
// @typeInfo(@TypeOf(self.type)).@"enum".tag_type,
// @intFromEnum(self.type),
// ));
// self.length = bigToNative(@TypeOf(self.length), self.length);
// errdefer {
// // If the payload specific headers fail, revert the top level header values
// self.type = @enumFromInt(nativeToBig(
// @typeInfo(@TypeOf(self.type)).@"enum".tag_type,
// @intFromEnum(self.type),
// ));
// self.length = nativeToBig(@TypeOf(self.length), self.length);
// }
// switch (try self.getSaprusTypePayload()) {
// .relay => {},
// .connection => |*con| con.*.nativeFromNetworkEndian(),
// // We know other values are unreachable,
// // because they would have returned an error from the switch condition.
// else => unreachable,
// }
// }
// /// Convert the message to network endianness from native endianness in-place.
// pub fn networkFromNativeEndian(self: *align(1) Self) MessageTypeError!void {
// try switch (try self.getSaprusTypePayload()) {
// .relay => {},
// .connection => |*con| con.*.networkFromNativeEndian(),
// .file_transfer => MessageTypeError.NotImplementedSaprusType,
// else => MessageTypeError.UnknownSaprusType,
// };
// self.type = @enumFromInt(nativeToBig(
// @typeInfo(@TypeOf(self.type)).@"enum".tag_type,
// @intFromEnum(self.type),
// ));
// self.length = nativeToBig(@TypeOf(self.length), self.length);
// }
// /// Convert network endian bytes to a native endian value in-place.
// pub fn networkBytesAsValue(bytes: SelfBytes) MessageParseError!*align(1) Self {
// const res = std.mem.bytesAsValue(Self, bytes);
// try res.nativeFromNetworkEndian();
// return .bytesAsValue(bytes);
// }
// /// Create a structured view of the bytes without initializing the length or type,
// /// and without converting the endianness.
// pub fn bytesAsValue(bytes: SelfBytes) MessageParseError!*align(1) Self {
// const res = std.mem.bytesAsValue(Self, bytes);
// return switch (res.type) {
// .relay, .connection => if (bytes.len == res.length + @sizeOf(Self))
// res
// else
// MessageParseError.InvalidMessage,
// .file_transfer => MessageParseError.NotImplementedSaprusType,
// else => MessageParseError.UnknownSaprusType,
// };
// }
// /// Deprecated.
// /// If I need the bytes, I should just pass around the slice that is backing this to begin with.
// pub fn asBytes(self: *align(1) Self) SelfBytes {
// const size = @sizeOf(Self) + self.length;
// return @as([*]align(1) u8, @ptrCast(self))[0..size];
// }
// };
// test "testing variable length zero copy struct" {
// {
// // Relay test
// const payload = "Hello darkness my old friend";
// var msg_bytes: [try Message.calcSize(.relay, payload.len)]u8 align(@alignOf(Message)) = undefined;
// // Create a view of the byte slice as a Message
// const msg: *align(1) Message = .init(.relay, &msg_bytes);
// {
// // Set the message values
// {
// // These are both set by the init call.
// // msg.type = .relay;
// // msg.length = payload_len;
// }
// const relay = (try msg.getSaprusTypePayload()).relay;
// relay.dest = .{ 1, 2, 3, 4 };
// @memcpy(relay.getPayload(), payload);
// }
// {
// // Print the message as hex using the network byte order
// try msg.networkFromNativeEndian();
// // We know the error from nativeFromNetworkEndian is unreachable because
// // it would have returned an error from networkFromNativeEndian.
// defer msg.nativeFromNetworkEndian() catch unreachable;
// std.debug.print("relay network bytes: {x}\n", .{msg_bytes});
// std.debug.print("bytes len: {d}\n", .{msg_bytes.len});
// }
// if (false) {
// // Illegal behavior
// std.debug.print("{any}\n", .{(try msg.getSaprusTypePayload()).connection});
// }
// try std.testing.expectEqualDeep(msg, try Message.bytesAsValue(msg.asBytes()));
// }
// {
// // Connection test
// const payload = "Hello darkness my old friend";
// var msg_bytes: [try Message.calcSize(.connection, payload.len)]u8 align(@alignOf(Message)) = undefined;
// // Create a view of the byte slice as a Message
// const msg: *align(1) Message = .init(.connection, &msg_bytes);
// {
// // Initializing connection header values
// const connection = (try msg.getSaprusTypePayload()).connection;
// connection.src_port = 1;
// connection.dest_port = 2;
// connection.seq_num = 3;
// connection.msg_id = 4;
// connection.reserved = 5;
// connection.options = @bitCast(@as(u8, 6));
// @memcpy(connection.getPayload(), payload);
// }
// {
// // Print the message as hex using the network byte order
// try msg.networkFromNativeEndian();
// // We know the error from nativeFromNetworkEndian is unreachable because
// // it would have returned an error from networkFromNativeEndian.
// defer msg.nativeFromNetworkEndian() catch unreachable;
// std.debug.print("connection network bytes: {x}\n", .{msg_bytes});
// std.debug.print("bytes len: {d}\n", .{msg_bytes.len});
// }
// }
// }
const std = @import("std"); const std = @import("std");
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
const Writer = std.Io.Writer;
const asBytes = std.mem.asBytes; // const asBytes = std.mem.asBytes;
const nativeToBig = std.mem.nativeToBig; // const nativeToBig = std.mem.nativeToBig;
const bigToNative = std.mem.bigToNative; // const bigToNative = std.mem.bigToNative;
test "Round trip Relay toBytes and fromBytes" { // test "Round trip Relay toBytes and fromBytes" {
if (false) { // if (true) return error.SkipZigTest;
const gpa = std.testing.allocator; // const gpa = std.testing.allocator;
const msg = Message{ // const msg = Message{
.relay = .{ // .relay = .{
.header = .{ .dest = .{ 255, 255, 255, 255 } }, // .header = .{ .dest = .{ 255, 255, 255, 255 } },
.payload = "Hello darkness my old friend", // .payload = "Hello darkness my old friend",
}, // },
}; // };
const to_bytes = try msg.toBytes(gpa); // const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes); // defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa); // const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa); // defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes); // try std.testing.expectEqualDeep(msg, from_bytes);
} // }
return error.SkipZigTest;
}
test "Round trip Connection toBytes and fromBytes" { // test "Round trip Connection toBytes and fromBytes" {
if (false) { // if (false) {
const gpa = std.testing.allocator; // const gpa = std.testing.allocator;
const msg = Message{ // const msg = Message{
.connection = .{ // .connection = .{
.header = .{ // .header = .{
.src_port = 0, // .src_port = 0,
.dest_port = 0, // .dest_port = 0,
}, // },
.payload = "Hello darkness my old friend", // .payload = "Hello darkness my old friend",
}, // },
}; // };
const to_bytes = try msg.toBytes(gpa); // const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes); // defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa); // const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa); // defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes); // try std.testing.expectEqualDeep(msg, from_bytes);
} // }
return error.SkipZigTest; // return error.SkipZigTest;
} // }
test { test {
std.testing.refAllDeclsRecursive(@This()); std.testing.refAllDeclsRecursive(@This());

View File

@@ -1,7 +1,5 @@
pub const Client = @import("Client.zig"); pub const Client = @import("Client.zig");
pub const Connection = @import("Connection.zig"); pub const Connection = @import("Connection.zig");
pub const RawSocketWriter = @import("RawSocketWriter.zig");
// pub const NetWriter = @import("NetWriter.zig");
const msg = @import("message.zig"); const msg = @import("message.zig");