8 Commits

Author SHA1 Message Date
87c9d921d4 startiing to clean up c api 2025-04-30 17:04:32 -04:00
f212454dfb Big changes to the C api implementations
Should map directly to the zig struct instead of mallocing
2025-04-27 18:03:06 -04:00
983544facf Add C to Zig converter
Further simplify struct
2025-04-27 18:03:06 -04:00
67818ed9d6 Make C struct match the binary API more closely
Also make the internal conversion function return errors properly
2025-04-27 18:03:06 -04:00
d459dd60ef Convert from Zig struct to C struct 2025-04-27 18:03:06 -04:00
ce21b94a43 use InstallHeader function to install the header 2025-04-27 18:03:06 -04:00
c0e466b28a successfully build c interface 2025-04-27 18:03:06 -04:00
ee6062334b Initial C api 2025-04-27 18:03:06 -04:00
10 changed files with 343 additions and 577 deletions

206
build.zig
View File

@@ -1,121 +1,88 @@
const std = @import("std");
const Step = std.Build.Step;
// Although this function looks imperative, it does not perform the build
// directly and instead it mutates the build graph (`b`) that will be then
// executed by an external runner. The functions in `std.Build` implement a DSL
// for defining build steps and express dependencies between them, allowing the
// build runner to parallelize the build automatically (and the cache system to
// know when a step doesn't need to be re-run).
// Although this function looks imperative, note that its job is to
// declaratively construct a build graph that will be executed by an external
// runner.
pub fn build(b: *std.Build) void {
// Standard target options allow the person running `zig build` to choose
// Standard target options allows the person running `zig build` to choose
// what target to build for. Here we do not override the defaults, which
// means any target is allowed, and the default is native. Other options
// for restricting supported target set are available.
const target = b.standardTargetOptions(.{});
// Standard optimization options allow the person running `zig build` to select
// between Debug, ReleaseSafe, ReleaseFast, and ReleaseSmall. Here we do not
// set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{});
// It's also possible to define more custom flags to toggle optional features
// of this build script using `b.option()`. All defined flags (including
// target and optimize options) will be listed when running `zig build --help`
// in this directory.
// This creates a module, which represents a collection of source files alongside
// some compilation options, such as optimization mode and linked system libraries.
// Zig modules are the preferred way of making Zig code available to consumers.
// addModule defines a module that we intend to make available for importing
// to our consumers. We must give it a name because a Zig package can expose
// multiple modules and consumers will need to be able to specify which
// module they want to access.
const mod = b.addModule("zaprus", .{
// The root source file is the "entry point" of this module. Users of
// this module will only be able to access public declarations contained
// in this file, which means that if you have declarations that you
// intend to expose to consumers that were defined in other files part
// of this module, you will have to make sure to re-export them from
// the root file.
const lib_mod = b.createModule(.{
.root_source_file = b.path("src/root.zig"),
// Later on we'll use this module as the root module of a test executable
// which requires us to specify a target.
.target = target,
});
mod.addImport("network", b.dependency("network", .{}).module("network"));
mod.addImport("gatorcat", b.dependency("gatorcat", .{}).module("gatorcat"));
// Here we define an executable. An executable needs to have a root module
// which needs to expose a `main` function. While we could add a main function
// to the module defined above, it's sometimes preferable to split business
// business logic and the CLI into two separate modules.
//
// If your goal is to create a Zig library for others to use, consider if
// it might benefit from also exposing a CLI tool. A parser library for a
// data serialization format could also bundle a CLI syntax checker, for example.
//
// If instead your goal is to create an executable, consider if users might
// be interested in also being able to embed the core functionality of your
// program in their own executable in order to avoid the overhead involved in
// subprocessing your CLI tool.
//
// If neither case applies to you, feel free to delete the declaration you
// don't need and to put everything under a single module.
const exe = b.addExecutable(.{
.name = "zaprus",
.root_module = b.createModule(.{
// b.createModule defines a new module just like b.addModule but,
// unlike b.addModule, it does not expose the module to consumers of
// this package, which is why in this case we don't have to give it a name.
.root_source_file = b.path("src/main.zig"),
// Target and optimization levels must be explicitly wired in when
// defining an executable or library (in the root module), and you
// can also hardcode a specific target for an executable or library
// definition if desireable (e.g. firmware for embedded devices).
.target = target,
.optimize = optimize,
// List of modules available for import in source files part of the
// root module.
.imports = &.{
// Here "zaprus" is the name you will use in your source code to
// import this module (e.g. `@import("zaprus")`). The name is
// repeated because you are allowed to rename your imports, which
// can be extremely useful in case of collisions (which can happen
// importing modules from different packages).
.{ .name = "zaprus", .module = mod },
.{ .name = "clap", .module = b.dependency("clap", .{}).module("clap") },
},
}),
});
// We will also create a module for our other entry point, 'main.zig'.
const exe_mod = b.createModule(.{
// `root_source_file` is the Zig "entry point" of the module. If a module
// only contains e.g. external object files, you can make this `null`.
// In this case the main source file is merely a path, however, in more
// complicated build scripts, this could be a generated file.
.root_source_file = b.path("src/main.zig"),
.target = target,
.optimize = optimize,
});
lib_mod.addImport("network", b.dependency("network", .{}).module("network"));
exe_mod.addImport("zaprus", lib_mod);
exe_mod.addImport("clap", b.dependency("clap", .{}).module("clap"));
const static_lib = b.addLibrary(.{
.linkage = .static,
.name = "zaprus",
.root_module = lib_mod,
});
static_lib.addIncludePath(.{ .cwd_relative = "include" });
static_lib.linkLibC();
b.installArtifact(static_lib);
const dynamic_lib = b.addLibrary(.{
.linkage = .dynamic,
.name = "zaprus",
.root_module = lib_mod,
});
dynamic_lib.addIncludePath(.{ .cwd_relative = "include" });
dynamic_lib.linkLibC();
b.installArtifact(dynamic_lib);
// C Headers
const c_header = b.addInstallHeaderFile(b.path("include/zaprus.h"), "zaprus.h");
b.getInstallStep().dependOn(&c_header.step);
// This creates another `std.Build.Step.Compile`, but this one builds an executable
// rather than a static library.
const exe = b.addExecutable(.{
.name = "zaprus",
.root_module = exe_mod,
});
// This declares intent for the executable to be installed into the
// install prefix when running `zig build` (i.e. when executing the default
// step). By default the install prefix is `zig-out/` but can be overridden
// by passing `--prefix` or `-p`.
// standard location when the user invokes the "install" step (the default
// step when running `zig build`).
b.installArtifact(exe);
b.installArtifact(b.addLibrary(.{
.linkage = .static,
.name = "zaprus",
.root_module = mod,
}));
// This creates a top level step. Top level steps have a name and can be
// invoked by name when running `zig build` (e.g. `zig build run`).
// This will evaluate the `run` step rather than the default step.
// For a top level step to actually do something, it must depend on other
// steps (e.g. a Run step, as we will see in a moment).
const run_step = b.step("run", "Run the app");
// This creates a RunArtifact step in the build graph. A RunArtifact step
// invokes an executable compiled by Zig. Steps will only be executed by the
// runner if invoked directly by the user (in the case of top level steps)
// or if another step depends on it, so it's up to you to define when and
// how this Run step will be executed. In our case we want to run it when
// the user runs `zig build run`, so we create a dependency link.
// This *creates* a Run step in the build graph, to be executed when another
// step is evaluated that depends on it. The next line below will establish
// such a dependency.
const run_cmd = b.addRunArtifact(exe);
run_step.dependOn(&run_cmd.step);
// By making the run step depend on the default step, it will be run from the
// By making the run step depend on the install step, it will be run from the
// installation directory rather than directly from within the cache directory.
// This is not necessary, however, if the application depends on other installed
// files, this ensures they will be present and in the expected location.
run_cmd.step.dependOn(b.getInstallStep());
// This allows the user to pass arguments to the application in the build
@@ -124,42 +91,21 @@ pub fn build(b: *std.Build) void {
run_cmd.addArgs(args);
}
// Creates an executable that will run `test` blocks from the provided module.
// Here `mod` needs to define a target, which is why earlier we made sure to
// set the releative field.
const mod_tests = b.addTest(.{
.root_module = mod,
// This creates a build step. It will be visible in the `zig build --help` menu,
// and can be selected like this: `zig build run`
// This will evaluate the `run` step rather than the default, which is "install".
const run_step = b.step("run", "Run the app");
run_step.dependOn(&run_cmd.step);
const exe_unit_tests = b.addTest(.{
.root_module = exe_mod,
});
// A run step that will run the test executable.
const run_mod_tests = b.addRunArtifact(mod_tests);
const run_exe_unit_tests = b.addRunArtifact(exe_unit_tests);
// Creates an executable that will run `test` blocks from the executable's
// root module. Note that test executables only test one module at a time,
// hence why we have to create two separate ones.
const exe_tests = b.addTest(.{
.root_module = exe.root_module,
});
// A run step that will run the second test executable.
const run_exe_tests = b.addRunArtifact(exe_tests);
// A top level step for running all tests. dependOn can be called multiple
// times and since the two run steps do not depend on one another, this will
// make the two of them run in parallel.
const test_step = b.step("test", "Run tests");
test_step.dependOn(&run_mod_tests.step);
test_step.dependOn(&run_exe_tests.step);
// Just like flags, top level steps are also listed in the `--help` menu.
//
// The Zig build system is entirely implemented in userland, which means
// that it cannot hook into private compiler APIs. All compilation work
// orchestrated by the build system will result in other Zig compiler
// subcommands being invoked with the right flags defined. You can observe
// these invocations when one fails (or you pass a flag to increase
// verbosity) to validate assumptions and diagnose problems.
//
// Lastly, the Zig build system is relatively simple and self-contained,
// and reading its source code will allow you to master it.
// Similar to creating the run step earlier, this exposes a `test` step to
// the `zig build --help` menu, providing a way for the user to request
// running the unit tests.
const test_step = b.step("test", "Run unit tests");
test_step.dependOn(&run_exe_unit_tests.step);
}

View File

@@ -37,16 +37,12 @@
// internet connectivity.
.dependencies = .{
.network = .{
.url = "git+https://github.com/ikskuh/zig-network#7947237eec317d9458897f82089f343a05450c2b",
.hash = "network-0.1.0-Pm-Agl8xAQBmkwohveGOfTk4zQnuqDs0Ptfbms4KP5Ce",
.url = "https://github.com/ikskuh/zig-network/archive/c76240d2240711a3dcbf1c0fb461d5d1f18be79a.zip",
.hash = "network-0.1.0-AAAAAOwlAQAQ6zKPUrsibdpGisxld9ftUKGdMvcCSpaj",
},
.clap = .{
.url = "git+https://github.com/Hejsil/zig-clap#9cfa61596cd44ef7be35f8d2e108d2025e09868e",
.hash = "clap-0.10.0-oBajB_TnAQB0l5UdW9WYhhJDEswbedvwFOzzZwGknYeR",
},
.gatorcat = .{
.url = "git+https://github.com/jeffective/gatorcat#db73d0f7780331d82e785e85773d1afaf154c2e6",
.hash = "gatorcat-0.3.11-WcrpTQn0BwArrCFVHy9FPBIPDJQqPrFdJlhiyH7Ng5x4",
.url = "git+https://github.com/Hejsil/zig-clap?ref=0.10.0#e47028deaefc2fb396d3d9e9f7bd776ae0b2a43a",
.hash = "clap-0.10.0-oBajB434AQBDh-Ei3YtoKIRxZacVPF1iSwp3IX_ZB8f0",
},
},
.paths = .{

15
include/zaprus.h Normal file
View File

@@ -0,0 +1,15 @@
// client
#include<stdint.h>
#include<stdlib.h>
int zaprus_init(void);
int zaprus_deinit(void);
int zaprus_send_relay(const char* payload, size_t len, char dest[4]);
int zaprus_send_initial_connection(const char* payload, size_t len, uint16_t initial_port);
void* zaprus_connect(const char* payload, size_t len);

View File

@@ -1,84 +1,22 @@
const base64Enc = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '=');
const base64Dec = std.base64.Base64Decoder.init(std.base64.standard_alphabet_chars, '=');
var rand: ?Random = null;
rand: Random,
writer: *std.Io.Writer,
const Self = @This();
const max_message_size = 2048;
pub fn init(writer: *std.Io.Writer) !Self {
pub fn init() !void {
var prng = Random.DefaultPrng.init(blk: {
var seed: u64 = undefined;
try posix.getrandom(mem.asBytes(&seed));
break :blk seed;
});
const rand = prng.random();
return .{
.rand = rand,
.writer = writer,
};
rand = prng.random();
try network.init();
}
pub fn deinit(self: *Self) void {
self.writer.flush() catch {};
pub fn deinit() void {
network.deinit();
}
/// Used for relay messages and connection handshake.
/// Assumes Client .init has been called.
fn broadcastInitialInterestMessage(self: *Self, msg_bytes: []align(@alignOf(SaprusMessage)) u8) !void {
var packet_bytes: [max_message_size]u8 = comptime blk: {
var b: [max_message_size]u8 = @splat(0);
// Destination MAC addr to FF:FF:FF:FF:FF:FF
for (0..6) |i| {
b[i] = 0xff;
}
// Set Ethernet type to IPv4
b[0x0c] = 0x08;
b[0x0d] = 0x00;
// Set IPv4 version to 4
b[0x0e] = 0x45;
// Destination broadcast
for (0x1e..0x22) |i| {
b[i] = 0xff;
}
// Set TTL
b[0x16] = 0x40;
// Set IPv4 protocol to UDP
b[0x17] = 0x11;
// Set interest filter value to 8888.
b[0x24] = 0x22;
b[0x25] = 0xb8;
break :blk b;
};
var msg: *SaprusMessage = try .bytesAsValue(msg_bytes);
try msg.networkFromNativeEndian();
defer msg.nativeFromNetworkEndian() catch unreachable;
// The byte position within the packet that the saprus message starts at.
const saprus_start_byte = 42;
@memcpy(packet_bytes[saprus_start_byte .. saprus_start_byte + msg_bytes.len], msg_bytes);
const writer = self.writer;
_ = try writer.write(packet_bytes[0 .. saprus_start_byte + msg_bytes.len]);
try writer.flush();
}
// fn broadcastSaprusMessage(msg_bytes: []align(@alignOf(SaprusMessage)) u8) !void {}
fn broadcastSaprusMessage(msg_bytes: []align(@alignOf(SaprusMessage)) u8, udp_port: u16) !void {
const msg: *SaprusMessage = try .bytesAsValue(msg_bytes);
try msg.networkFromNativeEndian();
defer msg.nativeFromNetworkEndian() catch unreachable;
fn broadcastSaprusMessage(msg: SaprusMessage, udp_port: u16, allocator: Allocator) !void {
const msg_bytes = try msg.toBytes(allocator);
defer allocator.free(msg_bytes);
var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close();
@@ -98,57 +36,54 @@ fn broadcastSaprusMessage(msg_bytes: []align(@alignOf(SaprusMessage)) u8, udp_po
try sock.bind(bind_addr);
std.debug.print("{x}\n", .{msg_bytes});
_ = try sock.sendTo(dest_addr, msg_bytes);
}
pub fn sendRelay(self: *Self, payload: []const u8, dest: [4]u8) !void {
var buf: [max_message_size]u8 align(@alignOf(SaprusMessage)) = undefined;
const msg_bytes = buf[0..try SaprusMessage.calcSize(
.relay,
base64Enc.calcSize(payload.len),
)];
const msg: *SaprusMessage = .init(.relay, msg_bytes);
pub fn sendRelay(payload: []const u8, dest: [4]u8, allocator: Allocator) !void {
const msg = SaprusMessage{
.relay = .{
.header = .{ .dest = dest },
.payload = payload,
},
};
const relay = (try msg.getSaprusTypePayload()).relay;
relay.dest = dest;
_ = base64Enc.encode(relay.getPayload(), payload);
try self.broadcastInitialInterestMessage(msg_bytes);
try broadcastSaprusMessage(msg, 8888, allocator);
}
fn randomPort(self: Self) u16 {
return self.rand.intRangeAtMost(u16, 1024, 65000);
fn randomPort() u16 {
var p: u16 = 0;
if (rand) |r| {
p = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
return p;
}
pub fn sendInitialConnection(
self: Self,
payload: []const u8,
output_bytes: []align(@alignOf(SaprusMessage)) u8,
initial_port: u16,
) !*SaprusMessage {
const dest_port = self.randomPort();
const msg_bytes = output_bytes[0..try SaprusMessage.calcSize(
.connection,
base64Enc.calcSize(payload.len),
)];
const msg: *SaprusMessage = .init(.connection, msg_bytes);
pub fn sendInitialConnection(payload: []const u8, initial_port: u16, allocator: Allocator) !SaprusMessage {
const dest_port = randomPort();
const msg = SaprusMessage{
.connection = .{
.header = .{
.src_port = initial_port,
.dest_port = dest_port,
},
.payload = payload,
},
};
const connection = (try msg.getSaprusTypePayload()).connection;
connection.src_port = initial_port;
connection.dest_port = dest_port;
_ = base64Enc.encode(connection.getPayload(), payload);
try broadcastSaprusMessage(msg_bytes, 8888);
try broadcastSaprusMessage(msg, 8888, allocator);
return msg;
}
pub fn connect(self: Self, payload: []const u8) !?SaprusConnection {
const initial_port = self.randomPort();
pub fn connect(payload: []const u8, allocator: Allocator) !SaprusMessage {
var initial_port: u16 = 0;
if (rand) |r| {
initial_port = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
var initial_conn_res: ?*SaprusMessage = null;
var initial_conn_res: ?SaprusMessage = null;
errdefer if (initial_conn_res) |c| c.deinit(allocator);
var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close();
@@ -163,26 +98,21 @@ pub fn connect(self: Self, payload: []const u8) !?SaprusConnection {
try sock.setReadTimeout(1 * std.time.us_per_s);
try sock.bind(bind_addr);
var sent_msg_bytes: [max_message_size]u8 align(@alignOf(SaprusMessage)) = undefined;
const msg = try self.sendInitialConnection(payload, &sent_msg_bytes, initial_port);
const msg = try sendInitialConnection(payload, initial_port, allocator);
var response_buf: [max_message_size]u8 align(@alignOf(SaprusMessage)) = undefined;
var response_buf: [4096]u8 = undefined;
_ = try sock.receive(&response_buf); // Ignore message that I sent.
const len = try sock.receive(&response_buf);
initial_conn_res = try .networkBytesAsValue(response_buf[0..len]);
initial_conn_res = try SaprusMessage.fromBytes(response_buf[0..len], allocator);
// Complete handshake after awaiting response
try broadcastSaprusMessage(msg.asBytes(), self.randomPort());
try broadcastSaprusMessage(msg, randomPort(), allocator);
if (false) {
return initial_conn_res.?;
}
return null;
}
const SaprusMessage = @import("message.zig").Message;
const SaprusConnection = @import("Connection.zig");
const std = @import("std");
const Random = std.Random;
@@ -190,3 +120,5 @@ const posix = std.posix;
const mem = std.mem;
const network = @import("network");
const Allocator = mem.Allocator;

View File

View File

@@ -1,45 +0,0 @@
const std = @import("std");
const gcat = @import("gatorcat");
const Writer = @This();
const assert = std.debug.assert;
interface: std.Io.Writer,
socket: gcat.nic.RawSocket,
alloc: std.mem.Allocator,
fn drain(io_w: *std.Io.Writer, data: []const []const u8, splat: usize) std.Io.Writer.Error!usize {
const w: *Writer = @alignCast(@fieldParentPtr("interface", io_w));
const buffered = io_w.buffered();
var res: usize = 0;
if (buffered.len > 0) {
w.socket.linkLayer().send(buffered) catch return error.WriteFailed;
_ = io_w.consumeAll();
}
for (data[0 .. data.len - 1]) |d| {
w.socket.linkLayer().send(d) catch return error.WriteFailed;
res += d.len;
}
if (splat > 0 and data[data.len - 1].len > 0) {
var splatBuffer: std.ArrayList(u8) = .empty;
defer splatBuffer.deinit(w.alloc);
for (0..splat) |_| {
splatBuffer.appendSlice(w.alloc, data[data.len - 1]) catch return error.WriteFailed;
}
w.socket.linkLayer().send(splatBuffer.items) catch return error.WriteFailed;
}
return res;
}
pub fn init(interface_name: [:0]const u8, buffer: []u8, alloc: std.mem.Allocator) !Writer {
return .{
.interface = .{
.vtable = &.{ .drain = drain },
.buffer = buffer,
},
.socket = try .init(interface_name),
.alloc = alloc,
};
}

32
src/c_api.zig Normal file
View File

@@ -0,0 +1,32 @@
// client
export fn zaprus_init() c_int {
SaprusClient.init() catch return 1;
return 0;
}
export fn zaprus_deinit() c_int {
SaprusClient.deinit();
return 0;
}
export fn zaprus_send_relay(payload: [*]const u8, len: usize, dest: [*]u8) c_int {
SaprusClient.sendRelay(payload[0..len], dest[0..4].*, allocator) catch return 1;
return 0;
}
export fn zaprus_connect(payload: [*]const u8, len: usize, output: *SaprusConnection) c_int {
output.* = (SaprusClient.connect(payload[0..len], allocator) catch return 1).?;
return 0;
}
const std = @import("std");
const zaprus = @import("./root.zig");
const SaprusClient = zaprus.Client;
const SaprusConnection = zaprus.Connection;
const allocator = std.heap.c_allocator;
test {
std.testing.refAllDeclsRecursively(@This());
}

View File

@@ -37,37 +37,42 @@ pub fn main() !void {
.allocator = gpa,
}) catch |err| {
// Report useful error and exit.
try diag.reportToFile(.stderr(), err);
diag.report(std.io.getStdErr().writer(), err) catch {};
return err;
};
defer res.deinit();
try SaprusClient.init();
defer SaprusClient.deinit();
if (res.args.help != 0) {
return clap.helpToFile(.stderr(), clap.Help, &params, .{});
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});
}
var sock_buffer: [2048]u8 = undefined;
var rawSocketWriter: RawSocketWriter = try .init("enp7s0", &sock_buffer, gpa); // /proc/net/dev
var client = try SaprusClient.init(&rawSocketWriter.interface);
defer client.deinit();
if (res.args.relay) |r| {
const dest = parseDest(res.args.dest);
try client.sendRelay(
const dest = parseDest(res.args.dest) catch .{ 70, 70, 70, 70 };
try SaprusClient.sendRelay(
if (r.len > 0) r else "Hello darkness my old friend",
dest,
gpa,
);
// std.debug.print("Sent: {s}\n", .{r});
return;
} else if (res.args.connect) |c| {
_ = client.connect(if (c.len > 0) c else "Hello darkness my old friend") catch |err| switch (err) {
const conn_res: ?SaprusMessage = SaprusClient.connect(if (c.len > 0) c else "Hello darkness my old friend", gpa) catch |err| switch (err) {
error.WouldBlock => null,
else => return err,
};
defer if (conn_res) |r| r.deinit(gpa);
if (conn_res) |r| {
std.debug.print("{s}\n", .{r.connection.payload});
} else {
std.debug.print("No response from connection request\n", .{});
}
return;
}
return clap.helpToFile(.stderr(), clap.Help, &params, .{});
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});
}
fn parseDest(in: ?[]const u8) [4]u8 {
@@ -81,7 +86,7 @@ fn parseDest(in: ?[]const u8) [4]u8 {
const addr = std.net.Ip4Address.parse(dest, 0) catch return "FAIL".*;
return @bitCast(addr.sa.addr);
}
return "zap\x00".*;
return "zap".*;
}
const builtin = @import("builtin");
@@ -92,6 +97,5 @@ const ArrayList = std.ArrayList;
const zaprus = @import("zaprus");
const SaprusClient = zaprus.Client;
const SaprusMessage = zaprus.Message;
const RawSocketWriter = zaprus.RawSocketWriter;
const clap = @import("clap");

View File

@@ -1,3 +1,6 @@
const base64Enc = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '=');
const base64Dec = std.base64.Base64Decoder.init(std.base64.standard_alphabet_chars, '=');
/// Type tag for Message union.
/// This is the first value in the actual packet sent over the network.
pub const PacketType = enum(u16) {
@@ -20,255 +23,155 @@ pub const ConnectionOptions = packed struct(u8) {
opt8: bool = false,
};
pub const MessageTypeError = error{
pub const Error = error{
NotImplementedSaprusType,
UnknownSaprusType,
};
pub const MessageParseError = MessageTypeError || error{
InvalidMessage,
};
// ZERO COPY STUFF
// &payload could be a void value that is treated as a pointer to a [*]u8
/// All Saprus messages
pub const Message = packed struct {
const Relay = packed struct {
pub const Message = union(PacketType) {
pub const Relay = struct {
pub const Header = packed struct {
dest: @Vector(4, u8),
payload: void,
pub fn getPayload(self: *align(1) Relay) []u8 {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Relay) / 8];
}
};
const Connection = packed struct {
header: Header,
payload: []const u8,
};
pub const Connection = struct {
pub const Header = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
payload: void,
pub fn getPayload(self: *align(1) Connection) []u8 {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Connection) / 8];
}
fn nativeFromNetworkEndian(self: *align(1) Connection) void {
self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port);
self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id);
}
fn networkFromNativeEndian(self: *align(1) Connection) void {
self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port);
self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = nativeToBig(@TypeOf(self.msg_id), self.msg_id);
}
};
const Self = @This();
const SelfBytes = []align(@alignOf(Self)) u8;
type: PacketType,
length: u16,
bytes: void = {},
/// Takes a byte slice, and returns a Message struct backed by the slice.
/// This properly initializes the top level headers within the slice.
/// This is used for creating new messages. For reading messages from the network,
/// see: networkBytesAsValue.
pub fn init(@"type": PacketType, bytes: []align(@alignOf(Self)) u8) *Self {
std.debug.assert(bytes.len >= @sizeOf(Self));
const res: *Self = @ptrCast(bytes.ptr);
res.type = @"type";
res.length = @intCast(bytes.len - @sizeOf(Self));
return res;
}
/// Compute the number of bytes required to store a given payload size for a given message type.
pub fn calcSize(comptime @"type": PacketType, payload_len: usize) MessageTypeError!u16 {
const header_size = @bitSizeOf(switch (@"type") {
.relay => Relay,
.connection => Connection,
.file_transfer => return MessageTypeError.NotImplementedSaprusType,
else => return MessageTypeError.UnknownSaprusType,
}) / 8;
return @intCast(payload_len + @sizeOf(Self) + header_size);
}
fn getRelay(self: *Self) *align(1) Relay {
return std.mem.bytesAsValue(Relay, &self.bytes);
}
fn getConnection(self: *Self) *align(1) Connection {
return std.mem.bytesAsValue(Connection, &self.bytes);
}
/// Access the message Saprus payload.
pub fn getSaprusTypePayload(self: *Self) MessageTypeError!(union(PacketType) {
relay: *align(1) Relay,
file_transfer: void,
connection: *align(1) Connection,
}) {
return switch (self.type) {
.relay => .{ .relay = self.getRelay() },
.connection => .{ .connection = self.getConnection() },
.file_transfer => MessageTypeError.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType,
header: Header,
payload: []const u8,
};
}
relay: Relay,
file_transfer: void, // unimplemented
connection: Connection,
/// Convert the message to native endianness from network endianness in-place.
pub fn nativeFromNetworkEndian(self: *Self) MessageTypeError!void {
self.type = @enumFromInt(bigToNative(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = bigToNative(@TypeOf(self.length), self.length);
errdefer {
// If the payload specific headers fail, revert the top level header values
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.nativeFromNetworkEndian(),
// We know other values are unreachable,
// because they would have returned an error from the switch condition.
/// Should be called for any Message that was declared using a function that you pass an allocator to.
pub fn deinit(self: Message, allocator: Allocator) void {
switch (self) {
.relay => |r| allocator.free(r.payload),
.connection => |c| allocator.free(c.payload),
else => unreachable,
}
}
/// Convert the message to network endianness from native endianness in-place.
pub fn networkFromNativeEndian(self: *Self) MessageTypeError!void {
try switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.networkFromNativeEndian(),
.file_transfer => MessageTypeError.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType,
};
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
fn toBytesAux(
header: anytype,
payload: []const u8,
buf: *std.ArrayList(u8),
allocator: Allocator,
) !void {
const Header = @TypeOf(header);
// Create a growable string to store the base64 bytes in.
// Doing this first so I can use the length of the encoded bytes for the length field.
var payload_list = std.ArrayList(u8).init(allocator);
defer payload_list.deinit();
const buf_w = payload_list.writer();
// Write the payload bytes as base64 to the growable string.
try base64Enc.encodeWriter(buf_w, payload);
// At this point, payload_list contains the base64 encoded payload.
// Add the payload length to the output buf.
try buf.*.appendSlice(
asBytes(&nativeToBig(u16, @intCast(payload_list.items.len + @bitSizeOf(Header) / 8))),
);
// Add the header bytes to the output buf.
var header_buf: [@sizeOf(Header)]u8 = undefined;
var header_buf_stream = std.io.fixedBufferStream(&header_buf);
try header_buf_stream.writer().writeStructEndian(header, .big);
// Add the exact number of bits in the header without padding.
try buf.*.appendSlice(header_buf[0 .. @bitSizeOf(Header) / 8]);
try buf.*.appendSlice(payload_list.items);
}
/// Convert network endian bytes to a native endian value in-place.
pub fn networkBytesAsValue(bytes: SelfBytes) MessageParseError!*Self {
const res = std.mem.bytesAsValue(Self, bytes);
try res.nativeFromNetworkEndian();
return .bytesAsValue(bytes);
/// Caller is responsible for freeing the returned bytes.
pub fn toBytes(self: Message, allocator: Allocator) ![]u8 {
// Create a growable list of bytes to store the output in.
var buf = std.ArrayList(u8).init(allocator);
errdefer buf.deinit();
// Start with writing the message type, which is the first 16 bits of every Saprus message.
try buf.appendSlice(asBytes(&nativeToBig(u16, @intFromEnum(self))));
// Write the proper header and payload for the given packet type.
switch (self) {
.relay => |r| try toBytesAux(r.header, r.payload, &buf, allocator),
.connection => |c| try toBytesAux(c.header, c.payload, &buf, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
}
/// Create a structured view of the bytes without initializing the length or type,
/// and without converting the endianness.
pub fn bytesAsValue(bytes: SelfBytes) MessageParseError!*Self {
const res = std.mem.bytesAsValue(Self, bytes);
return switch (res.type) {
.relay, .connection => if (bytes.len == res.length + @sizeOf(Self))
res
else
MessageParseError.InvalidMessage,
.file_transfer => MessageParseError.NotImplementedSaprusType,
else => MessageParseError.UnknownSaprusType,
};
// Collect the growable list as a slice and return it.
return buf.toOwnedSlice();
}
/// Deprecated.
/// If I need the bytes, I should just pass around the slice that is backing this to begin with.
pub fn asBytes(self: *Self) SelfBytes {
const size = @sizeOf(Self) + self.length;
return @as([*]align(@alignOf(Self)) u8, @ptrCast(self))[0..size];
fn fromBytesAux(
comptime packet: PacketType,
len: u16,
r: std.io.FixedBufferStream([]const u8).Reader,
allocator: Allocator,
) !Message {
const Header = @field(@FieldType(Message, @tagName(packet)), "Header");
// Read the header for the current message type.
var header_bytes: [@sizeOf(Header)]u8 = undefined;
_ = try r.read(header_bytes[0 .. @bitSizeOf(Header) / 8]);
var header_stream = std.io.fixedBufferStream(&header_bytes);
const header = try header_stream.reader().readStructEndian(Header, .big);
// Read the base64 bytes into a list to be able to call the decoder on it.
const payload_buf = try allocator.alloc(u8, len - @bitSizeOf(Header) / 8);
defer allocator.free(payload_buf);
_ = try r.readAll(payload_buf);
// Create a buffer to store the payload in, and decode the base64 bytes into the payload field.
const payload = try allocator.alloc(u8, try base64Dec.calcSizeForSlice(payload_buf));
try base64Dec.decode(payload, payload_buf);
// Return the type of Message specified by the `packet` argument.
return @unionInit(Message, @tagName(packet), .{
.header = header,
.payload = payload,
});
}
/// Caller is responsible for calling .deinit on the returned value.
pub fn fromBytes(bytes: []const u8, allocator: Allocator) !Message {
var s = std.io.fixedBufferStream(bytes);
const r = s.reader();
// Read packet type
const packet_type = @as(PacketType, @enumFromInt(try r.readInt(u16, .big)));
// Read the length of the header + base64 encoded payload.
const len = try r.readInt(u16, .big);
switch (packet_type) {
.relay => return fromBytesAux(.relay, len, r, allocator),
.connection => return fromBytesAux(.connection, len, r, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
else => return Error.UnknownSaprusType,
}
}
};
test "testing variable length zero copy struct" {
{
// Relay test
const payload = "Hello darkness my old friend";
var msg_bytes: [try Message.calcSize(.relay, payload.len)]u8 align(@alignOf(Message)) = undefined;
// Create a view of the byte slice as a Message
const msg: *Message = .init(.relay, &msg_bytes);
{
// Set the message values
{
// These are both set by the init call.
// msg.type = .relay;
// msg.length = payload_len;
}
const relay = (try msg.getSaprusTypePayload()).relay;
relay.dest = .{ 1, 2, 3, 4 };
@memcpy(relay.getPayload(), payload);
}
{
// Print the message as hex using the network byte order
try msg.networkFromNativeEndian();
// We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian.
defer msg.nativeFromNetworkEndian() catch unreachable;
std.debug.print("relay network bytes: {x}\n", .{msg_bytes});
std.debug.print("bytes len: {d}\n", .{msg_bytes.len});
}
if (false) {
// Illegal behavior
std.debug.print("{any}\n", .{(try msg.getSaprusTypePayload()).connection});
}
try std.testing.expectEqualDeep(msg, try Message.bytesAsValue(msg.asBytes()));
}
{
// Connection test
const payload = "Hello darkness my old friend";
var msg_bytes: [try Message.calcSize(.connection, payload.len)]u8 align(@alignOf(Message)) = undefined;
// Create a view of the byte slice as a Message
const msg: *Message = .init(.connection, &msg_bytes);
{
// Initializing connection header values
const connection = (try msg.getSaprusTypePayload()).connection;
connection.src_port = 1;
connection.dest_port = 2;
connection.seq_num = 3;
connection.msg_id = 4;
connection.reserved = 5;
connection.options = @bitCast(@as(u8, 6));
@memcpy(connection.getPayload(), payload);
}
{
// Print the message as hex using the network byte order
try msg.networkFromNativeEndian();
// We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian.
defer msg.nativeFromNetworkEndian() catch unreachable;
std.debug.print("connection network bytes: {x}\n", .{msg_bytes});
std.debug.print("bytes len: {d}\n", .{msg_bytes.len});
}
}
}
const std = @import("std");
const Allocator = std.mem.Allocator;
const asBytes = std.mem.asBytes;
const nativeToBig = std.mem.nativeToBig;
const bigToNative = std.mem.bigToNative;
test "Round trip Relay toBytes and fromBytes" {
if (false) {
const gpa = std.testing.allocator;
const msg = Message{
.relay = .{
@@ -285,11 +188,8 @@ test "Round trip Relay toBytes and fromBytes" {
try std.testing.expectEqualDeep(msg, from_bytes);
}
return error.SkipZigTest;
}
test "Round trip Connection toBytes and fromBytes" {
if (false) {
const gpa = std.testing.allocator;
const msg = Message{
.connection = .{
@@ -309,9 +209,3 @@ test "Round trip Connection toBytes and fromBytes" {
try std.testing.expectEqualDeep(msg, from_bytes);
}
return error.SkipZigTest;
}
test {
std.testing.refAllDeclsRecursive(@This());
}

View File

@@ -1,12 +1,4 @@
pub const Client = @import("Client.zig");
pub const Connection = @import("Connection.zig");
pub const RawSocketWriter = @import("RawSocketWriter.zig");
pub usingnamespace @import("message.zig");
const msg = @import("message.zig");
pub const PacketType = msg.PacketType;
pub const foo = msg.foo;
pub const ConnectionOptions = msg.ConnectionOptions;
pub const MessageTypeError = msg.MessageTypeError;
pub const MessageParseError = msg.MessageParseError;
pub const Message = msg.Message;
pub usingnamespace @import("c_api.zig");