1 Commits

Author SHA1 Message Date
ec18c9b421 Use stack based allocator 2025-04-06 13:08:09 -04:00
7 changed files with 105 additions and 657 deletions

View File

@@ -15,12 +15,6 @@ pub fn build(b: *std.Build) void {
// set a preferred release mode, allowing the user to decide how to optimize. // set a preferred release mode, allowing the user to decide how to optimize.
const optimize = b.standardOptimizeOption(.{}); const optimize = b.standardOptimizeOption(.{});
const lib_mod = b.createModule(.{
.root_source_file = b.path("src/root.zig"),
.target = target,
.optimize = optimize,
});
// We will also create a module for our other entry point, 'main.zig'. // We will also create a module for our other entry point, 'main.zig'.
const exe_mod = b.createModule(.{ const exe_mod = b.createModule(.{
// `root_source_file` is the Zig "entry point" of the module. If a module // `root_source_file` is the Zig "entry point" of the module. If a module
@@ -32,19 +26,7 @@ pub fn build(b: *std.Build) void {
.optimize = optimize, .optimize = optimize,
}); });
lib_mod.addImport("network", b.dependency("network", .{}).module("network")); exe_mod.addImport("network", b.dependency("network", .{}).module("network"));
lib_mod.addImport("gatorcat", b.dependency("gatorcat", .{}).module("gatorcat"));
exe_mod.addImport("zaprus", lib_mod);
exe_mod.addImport("clap", b.dependency("clap", .{}).module("clap"));
const lib = b.addLibrary(.{
.linkage = .static,
.name = "zaprus",
.root_module = lib_mod,
});
b.installArtifact(lib);
// This creates another `std.Build.Step.Compile`, but this one builds an executable // This creates another `std.Build.Step.Compile`, but this one builds an executable
// rather than a static library. // rather than a static library.

View File

@@ -40,14 +40,6 @@
.url = "https://github.com/ikskuh/zig-network/archive/c76240d2240711a3dcbf1c0fb461d5d1f18be79a.zip", .url = "https://github.com/ikskuh/zig-network/archive/c76240d2240711a3dcbf1c0fb461d5d1f18be79a.zip",
.hash = "network-0.1.0-AAAAAOwlAQAQ6zKPUrsibdpGisxld9ftUKGdMvcCSpaj", .hash = "network-0.1.0-AAAAAOwlAQAQ6zKPUrsibdpGisxld9ftUKGdMvcCSpaj",
}, },
.clap = .{
.url = "git+https://github.com/Hejsil/zig-clap?ref=0.10.0#e47028deaefc2fb396d3d9e9f7bd776ae0b2a43a",
.hash = "clap-0.10.0-oBajB434AQBDh-Ei3YtoKIRxZacVPF1iSwp3IX_ZB8f0",
},
.gatorcat = .{
.url = "git+https://github.com/kj4tmp/gatorcat#bb1847f6c95852e7a0ec8c07870a948c171d5f98",
.hash = "gatorcat-0.3.2-WcrpTf1mBwDrmPaIhKCfLJO064v8Sjjn7DBq4CKZSgHH",
},
}, },
.paths = .{ .paths = .{
"build.zig", "build.zig",

View File

@@ -1,132 +0,0 @@
var rand: ?Random = null;
pub fn init() !void {
var prng = Random.DefaultPrng.init(blk: {
var seed: u64 = undefined;
try posix.getrandom(mem.asBytes(&seed));
break :blk seed;
});
rand = prng.random();
try network.init();
}
pub fn deinit() void {
network.deinit();
}
fn broadcastSaprusMessage(msg: SaprusMessage, udp_port: u16, allocator: Allocator) !void {
const msg_bytes = try msg.toBytes(allocator);
defer allocator.free(msg_bytes);
var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close();
try sock.setBroadcast(true);
// Bind to 0.0.0.0:0
const bind_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.any },
.port = 0,
};
const dest_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.broadcast },
.port = udp_port,
};
try sock.bind(bind_addr);
_ = try sock.sendTo(dest_addr, msg_bytes);
}
pub fn sendRelay(payload: []const u8, dest: [4]u8, allocator: Allocator) !void {
const msg = SaprusMessage{
.relay = .{
.header = .{ .dest = dest },
.payload = payload,
},
};
try broadcastSaprusMessage(msg, 8888, allocator);
}
fn randomPort() u16 {
var p: u16 = 0;
if (rand) |r| {
p = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
return p;
}
pub fn sendInitialConnection(payload: []const u8, initial_port: u16, allocator: Allocator) !SaprusMessage {
const dest_port = randomPort();
const msg = SaprusMessage{
.connection = .{
.header = .{
.src_port = initial_port,
.dest_port = dest_port,
},
.payload = payload,
},
};
try broadcastSaprusMessage(msg, 8888, allocator);
return msg;
}
pub fn connect(payload: []const u8, allocator: Allocator) !?SaprusConnection {
var foo: gcat.nic.RawSocket = try .init("enp7s0"); // /proc/net/dev
defer foo.deinit();
var initial_port: u16 = 0;
if (rand) |r| {
initial_port = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
var initial_conn_res: ?SaprusMessage = null;
errdefer if (initial_conn_res) |c| c.deinit(allocator);
var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close();
// Bind to 255.255.255.255:8888
const bind_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.broadcast },
.port = 8888,
};
// timeout 1s
try sock.setReadTimeout(1 * std.time.us_per_s);
try sock.bind(bind_addr);
const msg = try sendInitialConnection(payload, initial_port, allocator);
var response_buf: [4096]u8 = undefined;
_ = try sock.receive(&response_buf); // Ignore message that I sent.
const len = try sock.receive(&response_buf);
initial_conn_res = try SaprusMessage.fromBytes(response_buf[0..len], allocator);
// Complete handshake after awaiting response
try broadcastSaprusMessage(msg, randomPort(), allocator);
if (false) {
return initial_conn_res.?;
}
return null;
}
const SaprusMessage = @import("message.zig").Message;
const SaprusConnection = @import("Connection.zig");
const std = @import("std");
const Random = std.Random;
const posix = std.posix;
const mem = std.mem;
const network = @import("network");
const gcat = @import("gatorcat");
const Allocator = mem.Allocator;

View File

View File

@@ -1,94 +1,119 @@
const is_debug = builtin.mode == .Debug; const is_debug = builtin.mode == .Debug;
const base64 = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '=');
/// This creates a debug allocator that can only be referenced in debug mode. const SaprusPacketType = enum(u16) {
/// You should check for is_debug around every reference to dba. relay = 0x003C,
var dba: DebugAllocator = file_transfer = 0x8888,
if (is_debug) connection = 0x00E9,
DebugAllocator.init };
else
@compileError("Should not use debug allocator in release mode");
pub fn main() !void { const SaprusConnectionOptions = packed struct(u8) {
defer if (is_debug) { opt1: bool = false,
_ = dba.deinit(); opt2: bool = false,
opt3: bool = false,
opt4: bool = false,
opt5: bool = false,
opt6: bool = false,
opt7: bool = false,
opt8: bool = false,
};
const SaprusMessage = union(SaprusPacketType) {
const Relay = struct {
header: packed struct {
dest: @Vector(4, u8),
},
payload: []const u8,
}; };
const Connection = struct {
const gpa = if (is_debug) dba.allocator() else std.heap.smp_allocator; header: packed struct {
src_port: u16,
// CLI parsing adapted from the example here dest_port: u16,
// https://github.com/Hejsil/zig-clap/blob/e47028deaefc2fb396d3d9e9f7bd776ae0b2a43a/README.md#examples seq_num: u32 = 0,
msg_id: u32 = 0,
// First we specify what parameters our program can take. reserved: u8 = 0,
// We can use `parseParamsComptime` to parse a string into an array of `Param(Help)`. options: SaprusConnectionOptions = .{},
const params = comptime clap.parseParamsComptime( },
\\-h, --help Display this help and exit. payload: []const u8,
\\-r, --relay <str> A relay message to send.
\\-d, --dest <str> An IPv4 or <= 4 ASCII byte string.
\\-c, --connect <str> A connection message to send.
\\
);
// Initialize our diagnostics, which can be used for reporting useful errors.
// This is optional. You can also pass `.{}` to `clap.parse` if you don't
// care about the extra information `Diagnostics` provides.
var diag = clap.Diagnostic{};
var res = clap.parse(clap.Help, &params, clap.parsers.default, .{
.diagnostic = &diag,
.allocator = gpa,
}) catch |err| {
// Report useful error and exit.
diag.report(std.io.getStdErr().writer(), err) catch {};
return err;
}; };
defer res.deinit(); relay: Relay,
file_transfer: void, // unimplemented
connection: Connection,
try SaprusClient.init(); fn toBytes(self: SaprusMessage, allocator: Allocator) ![]u8 {
defer SaprusClient.deinit(); var buf = std.ArrayList(u8).init(allocator);
const w = buf.writer();
try w.writeInt(u16, @intFromEnum(self), .big);
if (res.args.help != 0) { switch (self) {
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{}); .relay => |r| {
} try w.writeStructEndian(r.header, .big);
try w.writeInt(u16, @intCast(r.payload.len), .big);
if (res.args.relay) |r| { try base64.encodeWriter(w, r.payload);
const dest = parseDest(res.args.dest); },
try SaprusClient.sendRelay( .file_transfer => unreachable,
if (r.len > 0) r else "Hello darkness my old friend", .connection => |c| {
dest, try w.writeStructEndian(c.header, .big);
gpa, try w.writeInt(u16, @intCast(c.payload.len), .big);
); try base64.encodeWriter(w, c.payload);
// std.debug.print("Sent: {s}\n", .{r}); },
return;
} else if (res.args.connect) |c| {
_ = SaprusClient.connect(if (c.len > 0) c else "Hello darkness my old friend", gpa) catch |err| switch (err) {
error.WouldBlock => null,
else => return err,
};
}
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});
}
fn parseDest(in: ?[]const u8) [4]u8 {
if (in) |dest| {
if (dest.len <= 4) {
var res: [4]u8 = @splat(0);
@memcpy(res[0..dest.len], dest);
return res;
} }
const addr = std.net.Ip4Address.parse(dest, 0) catch return "FAIL".*; return buf.toOwnedSlice();
return @bitCast(addr.sa.addr);
} }
return "zap\x00".*; };
pub fn main() !void {
const DBA = std.heap.DebugAllocator(.{});
var dba: ?DBA = if (comptime is_debug) DBA.init else null;
defer if (dba) |*d| {
_ = d.deinit();
};
var allocator = if (dba) |*d|
d.allocator()
else blk: {
var buf: [128]u8 = undefined;
var fba = std.heap.FixedBufferAllocator.init(&buf);
break :blk fba.allocator();
};
const msg = SaprusMessage{
.relay = .{
.header = .{ .dest = .{ 255, 255, 255, 255 } },
.payload = "Hello darkness my old friend",
},
};
const msg_bytes = try msg.toBytes(allocator);
defer allocator.free(msg_bytes);
try network.init();
defer network.deinit();
var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close();
try sock.setBroadcast(true);
// Bind to 0.0.0.0:0
const bind_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.any },
.port = 0,
};
const dest_addr = network.EndPoint{
.address = network.Address{ .ipv4 = network.Address.IPv4.broadcast },
.port = 8888,
};
try sock.bind(bind_addr);
_ = try sock.sendTo(dest_addr, msg_bytes);
} }
const builtin = @import("builtin"); const builtin = @import("builtin");
const std = @import("std"); const std = @import("std");
const DebugAllocator = std.heap.DebugAllocator(.{}); const Allocator = std.mem.Allocator;
const ArrayList = std.ArrayList;
const zaprus = @import("zaprus"); const network = @import("network");
const SaprusClient = zaprus.Client;
const SaprusMessage = zaprus.Message;
const clap = @import("clap");

View File

@@ -1,415 +0,0 @@
const base64Enc = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '=');
const base64Dec = std.base64.Base64Decoder.init(std.base64.standard_alphabet_chars, '=');
/// Type tag for Message union.
/// This is the first value in the actual packet sent over the network.
pub const PacketType = enum(u16) {
relay = 0x003C,
file_transfer = 0x8888,
connection = 0x00E9,
_,
};
/// Reserved option values.
/// Currently unused.
pub const ConnectionOptions = packed struct(u8) {
opt1: bool = false,
opt2: bool = false,
opt3: bool = false,
opt4: bool = false,
opt5: bool = false,
opt6: bool = false,
opt7: bool = false,
opt8: bool = false,
};
pub const Error = error{
NotImplementedSaprusType,
UnknownSaprusType,
InvalidMessage,
};
// ZERO COPY STUFF
// &payload could be a void value that is treated as a pointer to a [*]u8
pub const ZeroCopyMessage = packed struct {
const Relay = packed struct {
dest: @Vector(4, u8),
payload: void,
pub fn getPayload(self: *align(@alignOf(ZeroCopyMessage)) Relay) []u8 {
// Cast the 'self' pointer (which points to the Relay header,
// located at the same memory as the parent's 'bytes' field)
// to a pointer to void, as required by @fieldParentPtr for a void field.
// Preserve the known alignment.
const self_as_void_ptr: *align(@alignOf(ZeroCopyMessage)) void = @ptrCast(self);
// Cast the resulting *void pointer to the parent type *ZeroCopyMessage.
// This cast performs the necessary alignment check.
const parent: *ZeroCopyMessage = @alignCast(@fieldParentPtr("bytes", self_as_void_ptr));
// The 'length' field in the parent ZeroCopyMessage contains
// the size of the header (Relay) + payload length.
const total_len = parent.length;
// Payload length = total_len - size of the Relay header
const payload_len = total_len - @sizeOf(Relay);
// The payload starts immediately after the fixed fields of the Relay struct.
// The address of the 'payload' field represents this starting point.
const payload_start_ptr: [*]u8 = @ptrCast(&self.payload);
// Return a slice from the payload start address with the calculated length.
return payload_start_ptr[0..payload_len];
}
};
const Connection = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
payload: void,
pub fn getPayload(self: *align(1) Connection) []u8 {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @sizeOf(Connection)];
}
fn nativeFromNetworkEndian(self: *align(1) Connection) Error!void {
self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port);
self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id);
}
fn networkFromNativeEndian(self: *align(1) Connection) Error!void {
self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port);
self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = nativeToBig(@TypeOf(self.msg_id), self.msg_id);
}
};
const Self = @This();
type: PacketType,
length: u16,
bytes: void = {},
pub fn init(allocator: Allocator, comptime @"type": PacketType, payload_len: u16) !*Self {
const header_size = @sizeOf(switch (@"type") {
.relay => Relay,
.connection => Connection,
else => return error.Bad,
});
const size = payload_len + @sizeOf(Self) + header_size;
const bytes = try allocator.alignedAlloc(u8, @alignOf(Self), size);
const res: *Self = @ptrCast(bytes.ptr);
res.type = @"type";
res.length = payload_len + header_size;
return res;
}
pub fn deinit(self: *Self, allocator: Allocator) void {
allocator.free(self.asBytes());
}
fn getRelay(self: *Self) *align(@alignOf(Self)) Relay {
return std.mem.bytesAsValue(Relay, &self.bytes);
}
fn getConnection(self: *Self) *align(@alignOf(Self)) Connection {
return std.mem.bytesAsValue(Connection, &self.bytes);
}
pub fn getSaprusTypePayload(self: *Self) Error!(union(PacketType) {
relay: *align(@alignOf(Self)) Relay,
file_transfer: void,
connection: *align(@alignOf(Self)) Connection,
}) {
return switch (self.type) {
.relay => .{ .relay = self.getRelay() },
.connection => .{ .connection = self.getConnection() },
.file_transfer => Error.NotImplementedSaprusType,
else => Error.UnknownSaprusType,
};
}
pub fn nativeFromNetworkEndian(self: *Self) Error!void {
self.type = @enumFromInt(bigToNative(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = bigToNative(@TypeOf(self.length), self.length);
switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| try con.*.nativeFromNetworkEndian(),
// We know other values are unreachable,
// because they would have returned an error from the switch condition.
else => unreachable,
}
}
pub fn networkFromNativeEndian(self: *Self) Error!void {
try switch (try self.getSaprusTypePayload()) {
.relay => {},
.connection => |*con| con.*.networkFromNativeEndian(),
.file_transfer => Error.NotImplementedSaprusType,
else => Error.UnknownSaprusType,
};
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
pub fn bytesAsValueUnchecked(bytes: []align(@alignOf(Self)) u8) *Self {
return std.mem.bytesAsValue(Self, bytes);
}
pub fn bytesAsValue(bytes: []align(@alignOf(Self)) u8) !*Self {
const res = bytesAsValueUnchecked(bytes);
return switch (res.type) {
.relay, .connection => if (bytes.len == res.length + @sizeOf(Self))
res
else
Error.InvalidMessage,
.file_transfer => Error.NotImplementedSaprusType,
else => Error.UnknownSaprusType,
};
}
pub fn asBytes(self: *Self) []align(@alignOf(Self)) u8 {
const size = @sizeOf(Self) + self.length;
return @as([*]align(@alignOf(Self)) u8, @ptrCast(self))[0..size];
}
};
test "testing variable length zero copy struct" {
const gpa = std.testing.allocator;
const payload = "Hello darkness my old friend";
// Create a view of the byte slice as a ZeroCopyMessage
const zcm: *ZeroCopyMessage = try .init(gpa, .relay, payload.len);
defer zcm.deinit(gpa);
std.debug.print("outer: {*}\n", .{zcm});
{
// Set the message values
{
// These are both set by the init call.
// zcm.type = .relay;
// zcm.length = payload_len;
}
const relay = (try zcm.getSaprusTypePayload()).relay;
relay.dest = .{ 1, 2, 3, 4 };
@memcpy(relay.getPayload(), payload);
}
{
const bytes = zcm.asBytes();
// Print the message as hex using the network byte order
try zcm.networkFromNativeEndian();
// We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian.
defer zcm.nativeFromNetworkEndian() catch unreachable;
std.debug.print("network bytes: {x}\n", .{bytes});
std.debug.print("bytes len: {d}\n", .{bytes.len});
}
if (false) {
// Illegal behavior
std.debug.print("{any}\n", .{(try zcm.getSaprusTypePayload()).connection});
}
try std.testing.expectEqualDeep(zcm, try ZeroCopyMessage.bytesAsValue(zcm.asBytes()));
}
/// All Saprus messages
pub const Message = union(PacketType) {
pub const Relay = struct {
pub const Header = packed struct {
dest: @Vector(4, u8),
};
header: Header,
payload: []const u8,
};
pub const Connection = struct {
pub const Header = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
};
header: Header,
payload: []const u8,
};
relay: Relay,
file_transfer: void, // unimplemented
connection: Connection,
/// Should be called for any Message that was declared using a function that you pass an allocator to.
pub fn deinit(self: Message, allocator: Allocator) void {
switch (self) {
.relay => |r| allocator.free(r.payload),
.connection => |c| allocator.free(c.payload),
else => unreachable,
}
}
fn toBytesAux(
header: anytype,
payload: []const u8,
buf: *std.ArrayList(u8),
allocator: Allocator,
) !void {
const Header = @TypeOf(header);
// Create a growable string to store the base64 bytes in.
// Doing this first so I can use the length of the encoded bytes for the length field.
var payload_list = std.ArrayList(u8).init(allocator);
defer payload_list.deinit();
const buf_w = payload_list.writer();
// Write the payload bytes as base64 to the growable string.
try base64Enc.encodeWriter(buf_w, payload);
// At this point, payload_list contains the base64 encoded payload.
// Add the payload length to the output buf.
try buf.*.appendSlice(
asBytes(&nativeToBig(u16, @intCast(payload_list.items.len + @bitSizeOf(Header) / 8))),
);
// Add the header bytes to the output buf.
var header_buf: [@sizeOf(Header)]u8 = undefined;
var header_buf_stream = std.io.fixedBufferStream(&header_buf);
try header_buf_stream.writer().writeStructEndian(header, .big);
// Add the exact number of bits in the header without padding.
try buf.*.appendSlice(header_buf[0 .. @bitSizeOf(Header) / 8]);
try buf.*.appendSlice(payload_list.items);
}
/// Caller is responsible for freeing the returned bytes.
pub fn toBytes(self: Message, allocator: Allocator) ![]u8 {
// Create a growable list of bytes to store the output in.
var buf = std.ArrayList(u8).init(allocator);
errdefer buf.deinit();
// Start with writing the message type, which is the first 16 bits of every Saprus message.
try buf.appendSlice(asBytes(&nativeToBig(u16, @intFromEnum(self))));
// Write the proper header and payload for the given packet type.
switch (self) {
.relay => |r| try toBytesAux(r.header, r.payload, &buf, allocator),
.connection => |c| try toBytesAux(c.header, c.payload, &buf, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
}
// Collect the growable list as a slice and return it.
return buf.toOwnedSlice();
}
fn fromBytesAux(
comptime packet: PacketType,
len: u16,
r: std.io.FixedBufferStream([]const u8).Reader,
allocator: Allocator,
) !Message {
const Header = @field(@FieldType(Message, @tagName(packet)), "Header");
// Read the header for the current message type.
var header_bytes: [@sizeOf(Header)]u8 = undefined;
_ = try r.read(header_bytes[0 .. @bitSizeOf(Header) / 8]);
var header_stream = std.io.fixedBufferStream(&header_bytes);
const header = try header_stream.reader().readStructEndian(Header, .big);
// Read the base64 bytes into a list to be able to call the decoder on it.
const payload_buf = try allocator.alloc(u8, len - @bitSizeOf(Header) / 8);
defer allocator.free(payload_buf);
_ = try r.readAll(payload_buf);
// Create a buffer to store the payload in, and decode the base64 bytes into the payload field.
const payload = try allocator.alloc(u8, try base64Dec.calcSizeForSlice(payload_buf));
try base64Dec.decode(payload, payload_buf);
// Return the type of Message specified by the `packet` argument.
return @unionInit(Message, @tagName(packet), .{
.header = header,
.payload = payload,
});
}
/// Caller is responsible for calling .deinit on the returned value.
pub fn fromBytes(bytes: []const u8, allocator: Allocator) !Message {
var s = std.io.fixedBufferStream(bytes);
const r = s.reader();
// Read packet type
const packet_type = @as(PacketType, @enumFromInt(try r.readInt(u16, .big)));
// Read the length of the header + base64 encoded payload.
const len = try r.readInt(u16, .big);
switch (packet_type) {
.relay => return fromBytesAux(.relay, len, r, allocator),
.connection => return fromBytesAux(.connection, len, r, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
else => return Error.UnknownSaprusType,
}
}
};
const std = @import("std");
const Allocator = std.mem.Allocator;
const asBytes = std.mem.asBytes;
const nativeToBig = std.mem.nativeToBig;
const bigToNative = std.mem.bigToNative;
test "Round trip Relay toBytes and fromBytes" {
const gpa = std.testing.allocator;
const msg = Message{
.relay = .{
.header = .{ .dest = .{ 255, 255, 255, 255 } },
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
}
test "Round trip Connection toBytes and fromBytes" {
const gpa = std.testing.allocator;
const msg = Message{
.connection = .{
.header = .{
.src_port = 0,
.dest_port = 0,
},
.payload = "Hello darkness my old friend",
},
};
const to_bytes = try msg.toBytes(gpa);
defer gpa.free(to_bytes);
const from_bytes = try Message.fromBytes(to_bytes, gpa);
defer from_bytes.deinit(gpa);
try std.testing.expectEqualDeep(msg, from_bytes);
}
test {
std.testing.refAllDeclsRecursive(@This());
}

View File

@@ -1,4 +0,0 @@
pub const Client = @import("Client.zig");
pub const Connection = @import("Connection.zig");
pub usingnamespace @import("message.zig");