1 Commits

4 changed files with 316 additions and 283 deletions

View File

@@ -45,8 +45,8 @@
.hash = "clap-0.10.0-oBajB434AQBDh-Ei3YtoKIRxZacVPF1iSwp3IX_ZB8f0", .hash = "clap-0.10.0-oBajB434AQBDh-Ei3YtoKIRxZacVPF1iSwp3IX_ZB8f0",
}, },
.gatorcat = .{ .gatorcat = .{
.url = "git+https://github.com/kj4tmp/gatorcat.git#0a97b666677501db4939e3e8245f88a19e015893", .url = "git+https://github.com/kj4tmp/gatorcat#bb1847f6c95852e7a0ec8c07870a948c171d5f98",
.hash = "gatorcat-0.3.4-WcrpTcleBwCta_9TjomuIGb3bdg2Pke_FXI_WkMTEivH", .hash = "gatorcat-0.3.2-WcrpTf1mBwDrmPaIhKCfLJO064v8Sjjn7DBq4CKZSgHH",
}, },
}, },
.paths = .{ .paths = .{

View File

@@ -1,88 +1,22 @@
const base64Enc = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '='); var rand: ?Random = null;
const base64Dec = std.base64.Base64Decoder.init(std.base64.standard_alphabet_chars, '=');
rand: Random, pub fn init() !void {
socket: gcat.nic.RawSocket,
const Self = @This();
const max_message_size = 2048;
pub fn init(interface_name: [:0]const u8) !Self {
var prng = Random.DefaultPrng.init(blk: { var prng = Random.DefaultPrng.init(blk: {
var seed: u64 = undefined; var seed: u64 = undefined;
try posix.getrandom(mem.asBytes(&seed)); try posix.getrandom(mem.asBytes(&seed));
break :blk seed; break :blk seed;
}); });
const rand = prng.random(); rand = prng.random();
try network.init();
const socket: gcat.nic.RawSocket = try .init(interface_name);
return .{
.rand = rand,
.socket = socket,
};
} }
pub fn deinit(self: *Self) void { pub fn deinit() void {
self.socket.deinit(); network.deinit();
} }
/// Used for relay messages and connection handshake. fn broadcastSaprusMessage(msg: SaprusMessage, udp_port: u16, allocator: Allocator) !void {
/// Assumes Client .init has been called. const msg_bytes = try msg.toBytes(allocator);
fn broadcastInitialInterestMessage(self: *Self, msg_bytes: []align(@alignOf(SaprusMessage)) u8) !void { defer allocator.free(msg_bytes);
var packet_bytes: [max_message_size]u8 = comptime blk: {
var b: [max_message_size]u8 = @splat(0);
// Destination MAC addr to FF:FF:FF:FF:FF:FF
for (0..6) |i| {
b[i] = 0xff;
}
// Set Ethernet type to IPv4
b[0x0c] = 0x08;
b[0x0d] = 0x00;
// Set IPv4 version to 4
b[0x0e] = 0x45;
// Destination broadcast
for (0x1e..0x22) |i| {
b[i] = 0xff;
}
// Set TTL
b[0x16] = 0x40;
// Set IPv4 protocol to UDP
b[0x17] = 0x11;
// Set interest filter value to 8888.
b[0x24] = 0x22;
b[0x25] = 0xb8;
break :blk b;
};
var msg: *SaprusMessage = try .bytesAsValue(msg_bytes);
try msg.networkFromNativeEndian();
defer msg.nativeFromNetworkEndian() catch unreachable;
// The byte position within the packet that the saprus message starts at.
const saprus_start_byte = 42;
@memcpy(packet_bytes[saprus_start_byte .. saprus_start_byte + msg_bytes.len], msg_bytes);
try self.socket.linkLayer().send(packet_bytes[0 .. saprus_start_byte + msg_bytes.len]);
}
// fn broadcastSaprusMessage(msg_bytes: []align(@alignOf(SaprusMessage)) u8) !void {}
fn broadcastSaprusMessage(msg_bytes: []align(@alignOf(SaprusMessage)) u8, udp_port: u16) !void {
if (false) {
var foo: gcat.nic.RawSocket = try .init("enp7s0"); // /proc/net/dev
defer foo.deinit();
}
const msg: *SaprusMessage = try .bytesAsValue(msg_bytes);
try msg.networkFromNativeEndian();
defer msg.nativeFromNetworkEndian() catch unreachable;
var sock = try network.Socket.create(.ipv4, .udp); var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close(); defer sock.close();
@@ -102,57 +36,57 @@ fn broadcastSaprusMessage(msg_bytes: []align(@alignOf(SaprusMessage)) u8, udp_po
try sock.bind(bind_addr); try sock.bind(bind_addr);
std.debug.print("{x}\n", .{msg_bytes});
_ = try sock.sendTo(dest_addr, msg_bytes); _ = try sock.sendTo(dest_addr, msg_bytes);
} }
pub fn sendRelay(self: *Self, payload: []const u8, dest: [4]u8) !void { pub fn sendRelay(payload: []const u8, dest: [4]u8, allocator: Allocator) !void {
var buf: [max_message_size]u8 align(@alignOf(SaprusMessage)) = undefined; const msg = SaprusMessage{
const msg_bytes = buf[0..try SaprusMessage.calcSize( .relay = .{
.relay, .header = .{ .dest = dest },
base64Enc.calcSize(payload.len), .payload = payload,
)]; },
const msg: *SaprusMessage = .init(.relay, msg_bytes); };
const relay = (try msg.getSaprusTypePayload()).relay; try broadcastSaprusMessage(msg, 8888, allocator);
relay.dest = dest;
_ = base64Enc.encode(relay.getPayload(), payload);
try self.broadcastInitialInterestMessage(msg_bytes);
} }
fn randomPort(self: Self) u16 { fn randomPort() u16 {
return self.rand.intRangeAtMost(u16, 1024, 65000); var p: u16 = 0;
if (rand) |r| {
p = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
return p;
} }
pub fn sendInitialConnection( pub fn sendInitialConnection(payload: []const u8, initial_port: u16, allocator: Allocator) !SaprusMessage {
self: Self, const dest_port = randomPort();
payload: []const u8, const msg = SaprusMessage{
output_bytes: []align(@alignOf(SaprusMessage)) u8, .connection = .{
initial_port: u16, .header = .{
) !*SaprusMessage { .src_port = initial_port,
const dest_port = self.randomPort(); .dest_port = dest_port,
const msg_bytes = output_bytes[0..try SaprusMessage.calcSize( },
.connection, .payload = payload,
base64Enc.calcSize(payload.len), },
)]; };
const msg: *SaprusMessage = .init(.connection, msg_bytes);
const connection = (try msg.getSaprusTypePayload()).connection; try broadcastSaprusMessage(msg, 8888, allocator);
connection.src_port = initial_port;
connection.dest_port = dest_port;
_ = base64Enc.encode(connection.getPayload(), payload);
try broadcastSaprusMessage(msg_bytes, 8888);
return msg; return msg;
} }
pub fn connect(self: Self, payload: []const u8) !?SaprusConnection { pub fn connect(payload: []const u8, allocator: Allocator) !?SaprusConnection {
const initial_port = self.randomPort(); var foo: gcat.nic.RawSocket = try .init("enp7s0"); // /proc/net/dev
defer foo.deinit();
var initial_conn_res: ?*SaprusMessage = null; var initial_port: u16 = 0;
if (rand) |r| {
initial_port = r.intRangeAtMost(u16, 1024, 65000);
} else unreachable;
var initial_conn_res: ?SaprusMessage = null;
errdefer if (initial_conn_res) |c| c.deinit(allocator);
var sock = try network.Socket.create(.ipv4, .udp); var sock = try network.Socket.create(.ipv4, .udp);
defer sock.close(); defer sock.close();
@@ -167,17 +101,16 @@ pub fn connect(self: Self, payload: []const u8) !?SaprusConnection {
try sock.setReadTimeout(1 * std.time.us_per_s); try sock.setReadTimeout(1 * std.time.us_per_s);
try sock.bind(bind_addr); try sock.bind(bind_addr);
var sent_msg_bytes: [max_message_size]u8 align(@alignOf(SaprusMessage)) = undefined; const msg = try sendInitialConnection(payload, initial_port, allocator);
const msg = try self.sendInitialConnection(payload, &sent_msg_bytes, initial_port);
var response_buf: [max_message_size]u8 align(@alignOf(SaprusMessage)) = undefined; var response_buf: [4096]u8 = undefined;
_ = try sock.receive(&response_buf); // Ignore message that I sent. _ = try sock.receive(&response_buf); // Ignore message that I sent.
const len = try sock.receive(&response_buf); const len = try sock.receive(&response_buf);
initial_conn_res = try .networkBytesAsValue(response_buf[0..len]); initial_conn_res = try SaprusMessage.fromBytes(response_buf[0..len], allocator);
// Complete handshake after awaiting response // Complete handshake after awaiting response
try broadcastSaprusMessage(msg.asBytes(), self.randomPort()); try broadcastSaprusMessage(msg, randomPort(), allocator);
if (false) { if (false) {
return initial_conn_res.?; return initial_conn_res.?;
@@ -195,3 +128,5 @@ const mem = std.mem;
const network = @import("network"); const network = @import("network");
const gcat = @import("gatorcat"); const gcat = @import("gatorcat");
const Allocator = mem.Allocator;

View File

@@ -42,27 +42,27 @@ pub fn main() !void {
}; };
defer res.deinit(); defer res.deinit();
try SaprusClient.init();
defer SaprusClient.deinit();
if (res.args.help != 0) { if (res.args.help != 0) {
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{}); return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});
} }
var client = try SaprusClient.init("enp7s0");
defer client.deinit();
if (res.args.relay) |r| { if (res.args.relay) |r| {
const dest = parseDest(res.args.dest); const dest = parseDest(res.args.dest);
try client.sendRelay( try SaprusClient.sendRelay(
if (r.len > 0) r else "Hello darkness my old friend", if (r.len > 0) r else "Hello darkness my old friend",
dest, dest,
gpa,
); );
// std.debug.print("Sent: {s}\n", .{r}); // std.debug.print("Sent: {s}\n", .{r});
return; return;
} else if (res.args.connect) |c| { } else if (res.args.connect) |c| {
_ = client.connect(if (c.len > 0) c else "Hello darkness my old friend") catch |err| switch (err) { _ = SaprusClient.connect(if (c.len > 0) c else "Hello darkness my old friend", gpa) catch |err| switch (err) {
error.WouldBlock => null, error.WouldBlock => null,
else => return err, else => return err,
}; };
return;
} }
return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{}); return clap.help(std.io.getStdErr().writer(), clap.Help, &params, .{});

View File

@@ -1,3 +1,6 @@
const base64Enc = std.base64.Base64Encoder.init(std.base64.standard_alphabet_chars, '=');
const base64Dec = std.base64.Base64Decoder.init(std.base64.standard_alphabet_chars, '=');
/// Type tag for Message union. /// Type tag for Message union.
/// This is the first value in the actual packet sent over the network. /// This is the first value in the actual packet sent over the network.
pub const PacketType = enum(u16) { pub const PacketType = enum(u16) {
@@ -20,25 +23,43 @@ pub const ConnectionOptions = packed struct(u8) {
opt8: bool = false, opt8: bool = false,
}; };
pub const MessageTypeError = error{ pub const Error = error{
NotImplementedSaprusType, NotImplementedSaprusType,
UnknownSaprusType, UnknownSaprusType,
};
pub const MessageParseError = MessageTypeError || error{
InvalidMessage, InvalidMessage,
}; };
// ZERO COPY STUFF // ZERO COPY STUFF
// &payload could be a void value that is treated as a pointer to a [*]u8 // &payload could be a void value that is treated as a pointer to a [*]u8
/// All Saprus messages pub const ZeroCopyMessage = packed struct {
pub const Message = packed struct {
const Relay = packed struct { const Relay = packed struct {
dest: @Vector(4, u8), dest: @Vector(4, u8),
payload: void, payload: void,
pub fn getPayload(self: *align(1) Relay) []u8 { pub fn getPayload(self: *align(@alignOf(ZeroCopyMessage)) Relay) []u8 {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16)); // Cast the 'self' pointer (which points to the Relay header,
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Relay) / 8]; // located at the same memory as the parent's 'bytes' field)
// to a pointer to void, as required by @fieldParentPtr for a void field.
// Preserve the known alignment.
const self_as_void_ptr: *align(@alignOf(ZeroCopyMessage)) void = @ptrCast(self);
// Cast the resulting *void pointer to the parent type *ZeroCopyMessage.
// This cast performs the necessary alignment check.
const parent: *ZeroCopyMessage = @alignCast(@fieldParentPtr("bytes", self_as_void_ptr));
// The 'length' field in the parent ZeroCopyMessage contains
// the size of the header (Relay) + payload length.
const total_len = parent.length;
// Payload length = total_len - size of the Relay header
const payload_len = total_len - @sizeOf(Relay);
// The payload starts immediately after the fixed fields of the Relay struct.
// The address of the 'payload' field represents this starting point.
const payload_start_ptr: [*]u8 = @ptrCast(&self.payload);
// Return a slice from the payload start address with the calculated length.
return payload_start_ptr[0..payload_len];
} }
}; };
const Connection = packed struct { const Connection = packed struct {
@@ -52,17 +73,17 @@ pub const Message = packed struct {
pub fn getPayload(self: *align(1) Connection) []u8 { pub fn getPayload(self: *align(1) Connection) []u8 {
const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16)); const len: *u16 = @ptrFromInt(@intFromPtr(self) - @sizeOf(u16));
return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @bitSizeOf(Connection) / 8]; return @as([*]u8, @ptrCast(&self.payload))[0 .. len.* - @sizeOf(Connection)];
} }
fn nativeFromNetworkEndian(self: *align(1) Connection) void { fn nativeFromNetworkEndian(self: *align(1) Connection) Error!void {
self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port); self.src_port = bigToNative(@TypeOf(self.src_port), self.src_port);
self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port); self.dest_port = bigToNative(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num); self.seq_num = bigToNative(@TypeOf(self.seq_num), self.seq_num);
self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id); self.msg_id = bigToNative(@TypeOf(self.msg_id), self.msg_id);
} }
fn networkFromNativeEndian(self: *align(1) Connection) void { fn networkFromNativeEndian(self: *align(1) Connection) Error!void {
self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port); self.src_port = nativeToBig(@TypeOf(self.src_port), self.src_port);
self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port); self.dest_port = nativeToBig(@TypeOf(self.dest_port), self.dest_port);
self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num); self.seq_num = nativeToBig(@TypeOf(self.seq_num), self.seq_num);
@@ -71,87 +92,70 @@ pub const Message = packed struct {
}; };
const Self = @This(); const Self = @This();
const SelfBytes = []align(@alignOf(Self)) u8;
type: PacketType, type: PacketType,
length: u16, length: u16,
bytes: void = {}, bytes: void = {},
/// Takes a byte slice, and returns a Message struct backed by the slice. pub fn init(allocator: Allocator, comptime @"type": PacketType, payload_len: u16) !*Self {
/// This properly initializes the top level headers within the slice. const header_size = @sizeOf(switch (@"type") {
/// This is used for creating new messages. For reading messages from the network, .relay => Relay,
/// see: networkBytesAsValue. .connection => Connection,
pub fn init(@"type": PacketType, bytes: []align(@alignOf(Self)) u8) *Self { else => return error.Bad,
std.debug.assert(bytes.len >= @sizeOf(Self)); });
const size = payload_len + @sizeOf(Self) + header_size;
const bytes = try allocator.alignedAlloc(u8, @alignOf(Self), size);
const res: *Self = @ptrCast(bytes.ptr); const res: *Self = @ptrCast(bytes.ptr);
res.type = @"type"; res.type = @"type";
res.length = @intCast(bytes.len - @sizeOf(Self)); res.length = payload_len + header_size;
return res; return res;
} }
/// Compute the number of bytes required to store a given payload size for a given message type. pub fn deinit(self: *Self, allocator: Allocator) void {
pub fn calcSize(comptime @"type": PacketType, payload_len: usize) MessageTypeError!u16 { allocator.free(self.asBytes());
const header_size = @bitSizeOf(switch (@"type") {
.relay => Relay,
.connection => Connection,
.file_transfer => return MessageTypeError.NotImplementedSaprusType,
else => return MessageTypeError.UnknownSaprusType,
}) / 8;
return @intCast(payload_len + @sizeOf(Self) + header_size);
} }
fn getRelay(self: *Self) *align(1) Relay { fn getRelay(self: *Self) *align(@alignOf(Self)) Relay {
return std.mem.bytesAsValue(Relay, &self.bytes); return std.mem.bytesAsValue(Relay, &self.bytes);
} }
fn getConnection(self: *Self) *align(1) Connection { fn getConnection(self: *Self) *align(@alignOf(Self)) Connection {
return std.mem.bytesAsValue(Connection, &self.bytes); return std.mem.bytesAsValue(Connection, &self.bytes);
} }
/// Access the message Saprus payload. pub fn getSaprusTypePayload(self: *Self) Error!(union(PacketType) {
pub fn getSaprusTypePayload(self: *Self) MessageTypeError!(union(PacketType) { relay: *align(@alignOf(Self)) Relay,
relay: *align(1) Relay,
file_transfer: void, file_transfer: void,
connection: *align(1) Connection, connection: *align(@alignOf(Self)) Connection,
}) { }) {
return switch (self.type) { return switch (self.type) {
.relay => .{ .relay = self.getRelay() }, .relay => .{ .relay = self.getRelay() },
.connection => .{ .connection = self.getConnection() }, .connection => .{ .connection = self.getConnection() },
.file_transfer => MessageTypeError.NotImplementedSaprusType, .file_transfer => Error.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType, else => Error.UnknownSaprusType,
}; };
} }
/// Convert the message to native endianness from network endianness in-place. pub fn nativeFromNetworkEndian(self: *Self) Error!void {
pub fn nativeFromNetworkEndian(self: *Self) MessageTypeError!void {
self.type = @enumFromInt(bigToNative( self.type = @enumFromInt(bigToNative(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type, @typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type), @intFromEnum(self.type),
)); ));
self.length = bigToNative(@TypeOf(self.length), self.length); self.length = bigToNative(@TypeOf(self.length), self.length);
errdefer {
// If the payload specific headers fail, revert the top level header values
self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@intFromEnum(self.type),
));
self.length = nativeToBig(@TypeOf(self.length), self.length);
}
switch (try self.getSaprusTypePayload()) { switch (try self.getSaprusTypePayload()) {
.relay => {}, .relay => {},
.connection => |*con| con.*.nativeFromNetworkEndian(), .connection => |*con| try con.*.nativeFromNetworkEndian(),
// We know other values are unreachable, // We know other values are unreachable,
// because they would have returned an error from the switch condition. // because they would have returned an error from the switch condition.
else => unreachable, else => unreachable,
} }
} }
/// Convert the message to network endianness from native endianness in-place. pub fn networkFromNativeEndian(self: *Self) Error!void {
pub fn networkFromNativeEndian(self: *Self) MessageTypeError!void {
try switch (try self.getSaprusTypePayload()) { try switch (try self.getSaprusTypePayload()) {
.relay => {}, .relay => {},
.connection => |*con| con.*.networkFromNativeEndian(), .connection => |*con| con.*.networkFromNativeEndian(),
.file_transfer => MessageTypeError.NotImplementedSaprusType, .file_transfer => Error.NotImplementedSaprusType,
else => MessageTypeError.UnknownSaprusType, else => Error.UnknownSaprusType,
}; };
self.type = @enumFromInt(nativeToBig( self.type = @enumFromInt(nativeToBig(
@typeInfo(@TypeOf(self.type)).@"enum".tag_type, @typeInfo(@TypeOf(self.type)).@"enum".tag_type,
@@ -160,105 +164,205 @@ pub const Message = packed struct {
self.length = nativeToBig(@TypeOf(self.length), self.length); self.length = nativeToBig(@TypeOf(self.length), self.length);
} }
/// Convert network endian bytes to a native endian value in-place. pub fn bytesAsValueUnchecked(bytes: []align(@alignOf(Self)) u8) *Self {
pub fn networkBytesAsValue(bytes: SelfBytes) MessageParseError!*Self { return std.mem.bytesAsValue(Self, bytes);
const res = std.mem.bytesAsValue(Self, bytes);
try res.nativeFromNetworkEndian();
return .bytesAsValue(bytes);
} }
/// Create a structured view of the bytes without initializing the length or type, pub fn bytesAsValue(bytes: []align(@alignOf(Self)) u8) !*Self {
/// and without converting the endianness. const res = bytesAsValueUnchecked(bytes);
pub fn bytesAsValue(bytes: SelfBytes) MessageParseError!*Self {
const res = std.mem.bytesAsValue(Self, bytes);
return switch (res.type) { return switch (res.type) {
.relay, .connection => if (bytes.len == res.length + @sizeOf(Self)) .relay, .connection => if (bytes.len == res.length + @sizeOf(Self))
res res
else else
MessageParseError.InvalidMessage, Error.InvalidMessage,
.file_transfer => MessageParseError.NotImplementedSaprusType, .file_transfer => Error.NotImplementedSaprusType,
else => MessageParseError.UnknownSaprusType, else => Error.UnknownSaprusType,
}; };
} }
/// Deprecated. pub fn asBytes(self: *Self) []align(@alignOf(Self)) u8 {
/// If I need the bytes, I should just pass around the slice that is backing this to begin with.
pub fn asBytes(self: *Self) SelfBytes {
const size = @sizeOf(Self) + self.length; const size = @sizeOf(Self) + self.length;
return @as([*]align(@alignOf(Self)) u8, @ptrCast(self))[0..size]; return @as([*]align(@alignOf(Self)) u8, @ptrCast(self))[0..size];
} }
}; };
test "testing variable length zero copy struct" { test "testing variable length zero copy struct" {
{ const gpa = std.testing.allocator;
// Relay test
const payload = "Hello darkness my old friend"; const payload = "Hello darkness my old friend";
var msg_bytes: [try Message.calcSize(.relay, payload.len)]u8 align(@alignOf(Message)) = undefined;
// Create a view of the byte slice as a Message // Create a view of the byte slice as a ZeroCopyMessage
const msg: *Message = .init(.relay, &msg_bytes); const zcm: *ZeroCopyMessage = try .init(gpa, .relay, payload.len);
defer zcm.deinit(gpa);
std.debug.print("outer: {*}\n", .{zcm});
{ {
// Set the message values // Set the message values
{ {
// These are both set by the init call. // These are both set by the init call.
// msg.type = .relay; // zcm.type = .relay;
// msg.length = payload_len; // zcm.length = payload_len;
} }
const relay = (try msg.getSaprusTypePayload()).relay; const relay = (try zcm.getSaprusTypePayload()).relay;
relay.dest = .{ 1, 2, 3, 4 }; relay.dest = .{ 1, 2, 3, 4 };
@memcpy(relay.getPayload(), payload); @memcpy(relay.getPayload(), payload);
} }
{ {
const bytes = zcm.asBytes();
// Print the message as hex using the network byte order // Print the message as hex using the network byte order
try msg.networkFromNativeEndian(); try zcm.networkFromNativeEndian();
// We know the error from nativeFromNetworkEndian is unreachable because // We know the error from nativeFromNetworkEndian is unreachable because
// it would have returned an error from networkFromNativeEndian. // it would have returned an error from networkFromNativeEndian.
defer msg.nativeFromNetworkEndian() catch unreachable; defer zcm.nativeFromNetworkEndian() catch unreachable;
std.debug.print("relay network bytes: {x}\n", .{msg_bytes}); std.debug.print("network bytes: {x}\n", .{bytes});
std.debug.print("bytes len: {d}\n", .{msg_bytes.len}); std.debug.print("bytes len: {d}\n", .{bytes.len});
} }
if (false) { if (false) {
// Illegal behavior // Illegal behavior
std.debug.print("{any}\n", .{(try msg.getSaprusTypePayload()).connection}); std.debug.print("{any}\n", .{(try zcm.getSaprusTypePayload()).connection});
} }
try std.testing.expectEqualDeep(msg, try Message.bytesAsValue(msg.asBytes())); try std.testing.expectEqualDeep(zcm, try ZeroCopyMessage.bytesAsValue(zcm.asBytes()));
} }
{ /// All Saprus messages
// Connection test pub const Message = union(PacketType) {
const payload = "Hello darkness my old friend"; pub const Relay = struct {
var msg_bytes: [try Message.calcSize(.connection, payload.len)]u8 align(@alignOf(Message)) = undefined; pub const Header = packed struct {
dest: @Vector(4, u8),
};
header: Header,
payload: []const u8,
};
pub const Connection = struct {
pub const Header = packed struct {
src_port: u16, // random number > 1024
dest_port: u16, // random number > 1024
seq_num: u32 = 0,
msg_id: u32 = 0,
reserved: u8 = 0,
options: ConnectionOptions = .{},
};
header: Header,
payload: []const u8,
};
relay: Relay,
file_transfer: void, // unimplemented
connection: Connection,
// Create a view of the byte slice as a Message /// Should be called for any Message that was declared using a function that you pass an allocator to.
const msg: *Message = .init(.connection, &msg_bytes); pub fn deinit(self: Message, allocator: Allocator) void {
switch (self) {
{ .relay => |r| allocator.free(r.payload),
// Initializing connection header values .connection => |c| allocator.free(c.payload),
const connection = (try msg.getSaprusTypePayload()).connection; else => unreachable,
connection.src_port = 1; }
connection.dest_port = 2;
connection.seq_num = 3;
connection.msg_id = 4;
connection.reserved = 5;
connection.options = @bitCast(@as(u8, 6));
@memcpy(connection.getPayload(), payload);
} }
{ fn toBytesAux(
// Print the message as hex using the network byte order header: anytype,
try msg.networkFromNativeEndian(); payload: []const u8,
// We know the error from nativeFromNetworkEndian is unreachable because buf: *std.ArrayList(u8),
// it would have returned an error from networkFromNativeEndian. allocator: Allocator,
defer msg.nativeFromNetworkEndian() catch unreachable; ) !void {
std.debug.print("connection network bytes: {x}\n", .{msg_bytes}); const Header = @TypeOf(header);
std.debug.print("bytes len: {d}\n", .{msg_bytes.len}); // Create a growable string to store the base64 bytes in.
} // Doing this first so I can use the length of the encoded bytes for the length field.
var payload_list = std.ArrayList(u8).init(allocator);
defer payload_list.deinit();
const buf_w = payload_list.writer();
// Write the payload bytes as base64 to the growable string.
try base64Enc.encodeWriter(buf_w, payload);
// At this point, payload_list contains the base64 encoded payload.
// Add the payload length to the output buf.
try buf.*.appendSlice(
asBytes(&nativeToBig(u16, @intCast(payload_list.items.len + @bitSizeOf(Header) / 8))),
);
// Add the header bytes to the output buf.
var header_buf: [@sizeOf(Header)]u8 = undefined;
var header_buf_stream = std.io.fixedBufferStream(&header_buf);
try header_buf_stream.writer().writeStructEndian(header, .big);
// Add the exact number of bits in the header without padding.
try buf.*.appendSlice(header_buf[0 .. @bitSizeOf(Header) / 8]);
try buf.*.appendSlice(payload_list.items);
}
/// Caller is responsible for freeing the returned bytes.
pub fn toBytes(self: Message, allocator: Allocator) ![]u8 {
// Create a growable list of bytes to store the output in.
var buf = std.ArrayList(u8).init(allocator);
errdefer buf.deinit();
// Start with writing the message type, which is the first 16 bits of every Saprus message.
try buf.appendSlice(asBytes(&nativeToBig(u16, @intFromEnum(self))));
// Write the proper header and payload for the given packet type.
switch (self) {
.relay => |r| try toBytesAux(r.header, r.payload, &buf, allocator),
.connection => |c| try toBytesAux(c.header, c.payload, &buf, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
}
// Collect the growable list as a slice and return it.
return buf.toOwnedSlice();
}
fn fromBytesAux(
comptime packet: PacketType,
len: u16,
r: std.io.FixedBufferStream([]const u8).Reader,
allocator: Allocator,
) !Message {
const Header = @field(@FieldType(Message, @tagName(packet)), "Header");
// Read the header for the current message type.
var header_bytes: [@sizeOf(Header)]u8 = undefined;
_ = try r.read(header_bytes[0 .. @bitSizeOf(Header) / 8]);
var header_stream = std.io.fixedBufferStream(&header_bytes);
const header = try header_stream.reader().readStructEndian(Header, .big);
// Read the base64 bytes into a list to be able to call the decoder on it.
const payload_buf = try allocator.alloc(u8, len - @bitSizeOf(Header) / 8);
defer allocator.free(payload_buf);
_ = try r.readAll(payload_buf);
// Create a buffer to store the payload in, and decode the base64 bytes into the payload field.
const payload = try allocator.alloc(u8, try base64Dec.calcSizeForSlice(payload_buf));
try base64Dec.decode(payload, payload_buf);
// Return the type of Message specified by the `packet` argument.
return @unionInit(Message, @tagName(packet), .{
.header = header,
.payload = payload,
});
}
/// Caller is responsible for calling .deinit on the returned value.
pub fn fromBytes(bytes: []const u8, allocator: Allocator) !Message {
var s = std.io.fixedBufferStream(bytes);
const r = s.reader();
// Read packet type
const packet_type = @as(PacketType, @enumFromInt(try r.readInt(u16, .big)));
// Read the length of the header + base64 encoded payload.
const len = try r.readInt(u16, .big);
switch (packet_type) {
.relay => return fromBytesAux(.relay, len, r, allocator),
.connection => return fromBytesAux(.connection, len, r, allocator),
.file_transfer => return Error.NotImplementedSaprusType,
else => return Error.UnknownSaprusType,
} }
} }
};
const std = @import("std"); const std = @import("std");
const Allocator = std.mem.Allocator; const Allocator = std.mem.Allocator;
@@ -268,7 +372,6 @@ const nativeToBig = std.mem.nativeToBig;
const bigToNative = std.mem.bigToNative; const bigToNative = std.mem.bigToNative;
test "Round trip Relay toBytes and fromBytes" { test "Round trip Relay toBytes and fromBytes" {
if (false) {
const gpa = std.testing.allocator; const gpa = std.testing.allocator;
const msg = Message{ const msg = Message{
.relay = .{ .relay = .{
@@ -285,11 +388,8 @@ test "Round trip Relay toBytes and fromBytes" {
try std.testing.expectEqualDeep(msg, from_bytes); try std.testing.expectEqualDeep(msg, from_bytes);
} }
return error.SkipZigTest;
}
test "Round trip Connection toBytes and fromBytes" { test "Round trip Connection toBytes and fromBytes" {
if (false) {
const gpa = std.testing.allocator; const gpa = std.testing.allocator;
const msg = Message{ const msg = Message{
.connection = .{ .connection = .{
@@ -309,8 +409,6 @@ test "Round trip Connection toBytes and fromBytes" {
try std.testing.expectEqualDeep(msg, from_bytes); try std.testing.expectEqualDeep(msg, from_bytes);
} }
return error.SkipZigTest;
}
test { test {
std.testing.refAllDeclsRecursive(@This()); std.testing.refAllDeclsRecursive(@This());